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Abstract. The rate of the muon transfer from the 1S-state of muonic protium to neon is calculated in the
interval of collision energies from 10−4 eV to 15 eV. The basic idea of the present treatment is to describe
the entrance channel of the transfer reaction at large interatomic separations as correctly as possible.
Accordingly, the three-body Hamiltonian is written in the Jacobi coordinates of the entrance channel, and
a problem of the muon motion in the field of two fixed Coulomb centers is formulated in these coordinates.
Its eigenstates are used as a basis in which the three-body wavefunction is expanded. Finally, the radial
functions describing the relative motion in the entrance and transfer channels satisfy a set of coupled
ordinary differential equations. Its solution allows one to find diagonal S-matrix elements corresponding
to the entrance channel and, as a result, to obtain the total transfer cross-section and the amplitude of
the elastic scattering. In this approach the description of the entrance channel proves to be free of the
well-known defects — incorrect dissociation limits and spurious long-range interactions. These defects are
manifested only in the transfer channel. However, their effect seems to be not very significant because of
large energies of the relative motion in this channel (a few keV). The calculation made here with four
two-center σ-states taken into account reasonably reproduces the experimental transfer rate measured in
liquid hydrogen-neon mixtures. The situation at room temperatures is worse: the theoretical value of the
transfer rate exceeds the experimental one by a factor of two. However, the calculation clearly indicates the
existence of a well pronounced minimum of the transfer rate at thermal energies. This result corresponds
qualitatively to the experimental fact of a strong suppression of the muon transfer at room temperatures.
At collision energies of 0.3–0.5 eV a resonant peak in the transfer rate is predicted. It is due to a quasi-
steady state in the D-wave. The elastic scattering of muonic protium by neon is also treated. The effect of
the electron screening in the entrance channel is studied in detail. It is found to be very significant right
up to collision energies of 1–2 eV.

PACS. 34.70.+e Charge transfer – 34.50.-s Scattering of atoms and molecules – 36.10.-k Exotic atoms
and molecules (containing mesons, muons, and other unusual particles)

1 Introduction

The 2S and 2P states of muonic protium µp are known to
be separated by the energy interval of 0.2 eV [1]. Unlike
the Lamb shift in the ordinary hydrogen atom, this split-
ting is mostly due to the vacuum polarization so the 2S
state is energetically lower. About two percent of the en-
ergy splitting is contributed by proton finite-size effects.
The leading finite-size correction is proportional to the
mean-square charge radius of the proton 〈r2p〉. In princi-
ple, a precise measurement of the 2S−2P splitting makes
it possible to determine the proton radius rp =

√
〈r2p〉

with a high accuracy. Of course, in this case the other sig-
nificant contributions to the splitting should be properly
taken into account [2].
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An experiment on measuring the 2S−2P splitting is
now in progress at the Paul Scherrer Institute (PSI,
Switzerland) [3,4]. Its idea is to produce µp(2S) atoms in
hydrogen gas, to excite the electric dipole transition be-
tween the hyperfine |2S1/2;F = 1〉 and |2P3/2;F = 2〉
components1 with light pulses generated by a tunable
laser and to record subsequent 2 keV X-rays emitted in
the 2P → 1S muon transition. The X-rays intensity as a
function of the laser wavelength should have a peak cor-
responding to the resonant excitation of the 2S → 2P3/2

transition indicated above. If the peak shape is well estab-
lished, the transition energy may be precisely determined
and the proton radius rp may be extracted. According
to [3,4], the accuracy of 0.1% in rp can be achieved. This
is much better than the present few percent accuracy. The
use of this value of rp will allow one to test quantum

1 F is the total angular momentum of µp.
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electrodynamics calculations of the ordinary hydrogen
atom at a considerably higher precision level.

1.1 The µp(2S) metastability

The laser experiment may be performed provided there is
an appreciable fraction of metastable µp(2S) atoms with
the lifetime of the order of 1 µs. The dominant disappear-
ance mode of the µp(2S) atom isolated from external per-
turbations is the muon decay so its lifetime is about 2 µs in
this case. In a gaseous H2 target an additional quenching
of the 2S state occurs in collisions of the muonic atom with
hydrogen molecules. This may be schematically written as
follows:

µp (2S) + H2 → µp (1S) + H2 + γ. (1)

γ denotes a 2 keV photon, the molecule H2 may be in
different vibrational and rotational states before and after
the collision. The mechanism of the reaction (1) and its
rate depend drastically on the muon-atom kinetic energy.
If it exceeds the 2S → 2P excitation threshold (0.2 eV
in the center-of-mass frame or 0.31 eV in the laboratory
frame in which the hydrogen molecule is assumed to be
initially in rest), the 2P state is excited during the col-
lision and the photon is then emitted in the 2P → 1S
muon transition. At the laboratory-frame kinetic energy
Elab ∼ 1 eV the collision time is shorter than the 2P state
lifetime by three orders of magnitude so the radiation may
be treated to occur after the collision. Within this approx-
imation the cross-section σq of the reaction (1) was esti-
mated in [5–7] by considering the quenching of µp(2S) in
collisions with hydrogen atoms. It was found that σq in-
creased with Elab from zero at the threshold to 10−16 cm2

at Elab = 1−2 eV 2. Because of such large values of the
cross-section the reaction (1) becomes the dominant dis-
appearance mode of the 2S state at H2 pressures of a few
mbar. For example, at 1 mbar the lifetime of µp(2S) with
Elab > 1 eV is less than 0.2 µs.

If the muon-atom kinetic energy is below the 2S → 2P
excitation threshold, the situation changes qualitatively.
In this case the radiative muon transition occurs dur-
ing the collision due to the Stark mixing of the 2S and
2P states induced by the electric field of the hydrogen
molecule. Because of the smallness of the collision time
compared to the 2P state lifetime, the cross-section of the
reaction (1) becomes considerably less than that found
in the above-threshold energy region. The corresponding
calculations were made in [8,9] for µp(2S) collisions with
hydrogen atoms. The quenching cross-section σq was ob-
tained to be of the order of 10−18−10−19 cm2. Accord-
ingly, typical rates of the reaction (1) are 103−104 s−1 at

2 The behaviour of σq near the 2S → 2P excitation threshold
needs a more refined treatment taking into account the finite
2P state width. Actually, σq does not equal to zero at the
threshold, but it drops rapidly as Elab migrates into the sub-
threshold region [5]. Of course, the fine and hyperfine structure
should be also taken into account in such a treatment.

a few mbar of H2, so the collisional quenching is insignifi-
cant in this case and the muon-atom 2S state is metastable
with the lifetime about 2 µs.

The fraction of the metastable µp(2S) atoms with the
kinetic energies below the 2S → 2P excitation threshold
(0.31 eV) is seen to relate to the laser experiment. This
fraction is determined by both the initial energy distribu-
tion of µp(2S) atoms after their formation and the kinetics
of their subsequent moderation in hydrogen. Concerning
the initial energy distribution, it was experimentally stud-
ied for µp(1S) atoms only [10]. In order to increase the
amount of muonic atoms with energies less than 1−2 eV,
the experiment was performed at low H2 pressures lying
between 0.063 and 64 mbar. It is expected that at such
small densities the energy distribution is nearly the same
for the muonic atoms in the 1S and 2S states. It was thus
found that at a few mbar of H2 about 10% of µp(2S)
atoms had subthreshold initial energies (below 0.31 eV).
These muonic atoms are metastable from the beginning.
Moreover, about 20% of the muonic atoms has initial en-
ergies between 0.31 and 1 eV. A part of such atoms re-
mains unquenched in slowing down to 0.31 eV. This part
was estimated in [6,7] where the transport and differen-
tial cross-sections of the elastic scattering of µp(2S) by
H atoms were calculated and the migration kinetics of
muonic atoms in hydrogen was considered. The part of
the unquenched µp(2S) with the initial kinetic energy of
1 eV was obtained to be about 50% 3. So, the amount
of the muonic atoms in the 2S state which have the initial
energies between 0.31 and 1 eV and remain unquenched
in slowing down to the the 2S → 2P excitation threshold
is, at least, 10%. In the sum with 10% of the initially sub-
threshold atoms this gives about 20% for the metastable
µp(2S) fraction. Taking into account that the 2S state pop-
ulation found from X-ray measurements at a few mbar of
H2 is around 4% per one muon stop [11], the yield of the
metastable µp(2S) atoms is obtained to be about 1% per
one µp atom initially formed [3].

1.2 Searching for metastable µp(2S) atoms

The above-presented estimation of the yield of the
metastable µp(2S) atoms is based on a number of indirect
data. More direct measurements of the 2S state metasta-
bility were also performed at PSI [3,12]. The idea con-
sisted in using the reaction of the muon transfer from the
2S state of muonic protium µp to neon [13]:

µp (2S) + Ne → µNe∗ + p. (2)

The final µNe∗ atom is formed in an excited state, the
subsequent decay of which is accompanied by the emission
of delayed K-series X-rays with energies around 200 keV.
The muon transfer occurs also from the 1S state of µp:

µp (1S) + Ne → µNe∗ + p. (3)

3 The part of the unquenched muonic atoms falls rapidly
with increasing the initial kinetic energy. For example, it is 4%
at the initial energy of 5 eV [7].
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The X-rays emitted by muonic neon formed in this process
are a background for the reaction (2). A favourable cir-
cumstance which caused the choice of neon for the search
for µp(2S) atoms is that the reaction (3) is strongly sup-
pressed. Its rate was measured in gaseous hydrogen-neon
mixtures at room temperatures, the total pressure of 15
and 38 bar and neon concentrations of 0.7−2.0% [14]. The
result obtained is:

λµp
t (1S) = (0.0849± 0.0018)× 1011 s−1. (4)

This value is traditionally reduced to the atomic density
of liquid hydrogen (the number of protons in cm3):

NH = 4.25 × 1022 cm−3. (5)

The rate (4) was extracted from time spectra of delayed X-
rays emitted in the 1S transfer reaction (3). These spectra
were found to have a long-lived single exponential compo-
nent following a prompt peak caused by muons directly
captured in neon. Such a structure means that at the
above-indicated pressures most of µp(1S) atoms come into
the transfer reaction after a quick thermalization in the
gas mixture. So, the result (4) corresponds to thermalized
muonic atoms. Then a typical 1S transfer cross-section at
thermal energies is:

σt(1S) ∼ 10−18 cm2. (6)

The cross-section of the 2S transfer reaction (2) was esti-
mated in [15,16]. At thermal energies it is:

σt(2S) ∼ 3 × 10−16 cm2. (7)

So, the 2S transfer rate exceeds the rate of the 1S transfer
background (3) by a factor of 300. This factor compensates
the small (∼ 1%) yield of the metastable µp(2S) atoms.

Actually, in the PSI experiment [3,12] the contribution
of the 1S transfer was additionally suppressed. µp(2S) and
µp(1S) atoms were formed near the axis of a cylindrical
chamber with the variable diameter around 1 cm and gold
coated walls. The chamber was filled with a hydrogen-neon
mixture at pressures of 4−16 mbar and neon concentra-
tions of 3−50%. The cross-section of the µp(1S) scatter-
ing by hydrogen molecules is around 10−18 cm2 [17] while
for µp(2S) scattering it is about two orders of magnitude
greater [6,7]. As a result, the free path of µp(1S) atoms
appreciably exceeds the chamber radius while for µp(2S)
atoms the relation is opposite. Accordingly, most of µp(1S)
atoms rapidly reach the chamber walls without scatter-
ing by hydrogen molecules4. On the contrary, the µp(2S)
atoms are quickly thermalized and disappear inside the
chamber. For these reasons the measured time spectra of
µNe X-rays consisted of the prompt peak followed by a
rapidly dying component caused mostly by the 1S trans-
fer, and a long-lived tail extending to several µs and con-
tributed by the 2S transfer. Additional data on µp(1S)
atoms were obtained by recording time spectra of µAu X-
rays emitted after these atoms had reached the chamber

4 If the collisions are ignored, the time spent by the muonic
atom with the energy of 1 eV to pass 1 cm is about 0.8 µs.

walls and transferred the muon to gold. The neon and gold
time spectra were reproduced by a Monte Carlo simulation
using the initial µp energy distribution measured in [10]. It
was found to be impossible to fit the spectra with the help
of the energy-independent 1S transfer rate (4) reduced to
experimental neon densities (about 5×103 s−1 at the par-
tial neon pressure of 1 mbar). A five times greater value
of this rate is needed, or its energy dependence has to
be introduced. Concerning the 2S transfer, its taking into
account is certainly needed to reproduce the long-lived
tail of the neon time spectra. This directly indicates the
existence of metastable µp(2S) atoms. Their amount was
found to be about the expected value of 1% per one muon
stop. However, the slope of the long-lived tail proved to
be independent on the partial neon pressure. This means
that the 2S transfer rate actually observed is much less
than the value expected on the basis of the theoretical
estimation (7). The latter is of the order of 106 s−1 at
1 mbar of neon.

1.3 The subject of the present work

In this paper we shall concentrate on the reaction (3) of
the muon transfer from the 1S state of muonic protium
to neon. As it was mentioned above, the PSI experiment
on searching for the 2S state metastability was based on
the fact of the strong suppression of this reaction at ther-
mal energies. However, in the experiment most of µp(1S)
atoms were not thermalized, but passed through the tar-
get chamber without scattering on H2 molecules so that
their energy distribution remained close to the initial one.
The latter was established to be rather extended [10]. For
example, at 4 mbar of H2 about 30% of the µp(1S) atoms
initially formed has the kinetic energy below 1 eV, and
about 90% has the energy below 15 eV. So, the knowl-
edge of the energy dependence of the 1S transfer cross-
section seems to be significant. Here we try to make a
contribution to surmounting this problem. Actually, the
total cross-section σt(1S) of the reaction (3) is calculated
in the interval 10−4 eV ≤ Ec ≤ 15 eV. Ec is the col-
lision energy (the initial kinetic energy in the center-of-
mass frame). The lowest value of 10−4 eV corresponds to
the temperature of a hydrogen-neon mixture around 1 K.
Such low energies are considered in connection with mea-
surements performed in liquid mixtures (see below). Be-
sides the muon transfer, the elastic scattering of µp(1S)
atoms by neon is treated. It may be of interest because
some of the hydrogen-neon mixtures studied in the PSI
experiment had a high percentage of neon (up to 50%).

1.3.1 Some data on the muon transfer

Before coming to our calculations it is useful to discuss
available data on the reaction (3). It is a particular case
of the direct muon transfer from hydrogen to a chemical
element with the atomic number Z:

µH(1S) + Z → µZ + H. (8)
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H denotes a hydrogen isotope. Some features of this reac-
tion for elements with Z ≥ 6 were theoretically established
in [15,18]. The muon transfer was treated to occur due to
crossings and quasicrossings of adiabatic terms originat-
ing from the 1S state of muonic hydrogen and excited
states of the µZ atom. The probability of nonadiabatic
transitions from one term to another was estimated with
the Landau-Zener formula. The interference of waves de-
scribing the relative motion in different channels was fully
ignored. The collision energy was assumed to be small so
that only the S-wave was taken into account. Before dis-
cussing the predictions made within these approximations
let us introduce two quantities relevant to the reaction (8).

qt(1S) = NH v σt(1S) (9)

is the transfer rate for a fixed value of the velocity v of
the relative motion of the µH and Z atoms. It is reduced
to the atomic density of liquid hydrogen (5).

λt(1S) = 〈qt(1S)〉 (10)

is the reduced rate of the muon transfer from thermalized
µH atoms. The brackets mean averaging over the thermal
motion. In a gas averaging is made over the Maxwellian
distribution. In particular, the result (4) relates to this
case.

The predictions mentioned above are [19]:

1. at collision energies corresponding to room tempera-
tures the transfer cross-section is proportional to the
following combination:

σt(1S) ∝ Z

v
√
Mn

. (11)

Mn is the reduced mass of the nuclei H and Z. As
the inverse v law is valid for the cross-section, the rate
qt(1S) is energy independent, and λt(1S) is temper-
ature independent. The Z-dependence of the rates is
monotone (linear in Z like in (11) or ∝ Z2/3 with tak-
ing into account the electron screening). The depen-
dence on Mn indicates that the ratio of the transfer
rates from thermalized µp and µd atoms is about 1.4;

2. at higher collision energies the transfer cross-section
becomes inversely proportional to Mn and Ec:

σt(1S) ∝ 1
MnEc

. (12)

In this case the ratio of the µp and µd transfer rates
at the same collision energy is about 2;

3. states of the µZ atom, the wave functions of which are
stretched along the H−Z axis, are mostly populated in
the reaction (8). As a result, high-order components of
the delayed K-series X-rays caused by the muon trans-
fer are appreciably more intensive than those emitted
by the µZ atoms formed directly.

The reaction (8) was experimentally studied in a num-
ber of dense gaseous targets at room temperatures [20].
The predictions on the monotone Z-dependence and on

the relation of the transfer rates from µp and µd atoms
were established to be valid only for heavy elements like
Ar, Kr and Xe. In the region 6 ≤ Z ≤ 10 the situa-
tion proved to be much more complicated. It was found
that the Z-dependence was substantially nonmonotonic
and the transfer from µd atoms occurred with an appre-
ciably greater rate than from µp atoms. The discrepancy
between the experimental results and the theoretical pre-
dictions is extreme for the muon transfer to neon. In this
case the transfer rate from thermalized µp atoms evalu-
ated in [15] exceeds the experimental value (4) by a factor
of 10−15. The transfer rate from thermalized µd atoms
was also measured. It is [14]:

λµd
t (1S) = (1.010 ± 0.026)× 1011 s−1. (13)

Contrary to the expectations, it is one order of magnitude
greater than (4). Concerning the inverse v law (11) for
the transfer cross-section, it appears to be invalid at room
temperatures. This follows from the comparison of the
rates (4) and (13) measured in gaseous targets at 300 K
and the transfer rates observed in liquid hydrogen-neon
mixtures near 20 K. The latter are [20]:

λµp
t (1S) = (0.300 ± 0.100)× 1011 s−1, (14)

λµd
t (1S) = (1.8 ± 0.7) × 1011 s−1. (15)

The temperature dependence of the transfer rates is
clearly seen. This may mean that the quantity qt(1S) is
not constant at the collision energies below, for example,
(1/40) eV. However, a reserve should be done here. At
temperatures about 20 K typical de Broglie wavelengths
of µp and µd atoms are comparable with distances be-
tween H2 molecules in liquid hydrogen. For this reason the
wave describing the relative motion of muonic and neon
atoms may be distorted due to scattering on surround-
ing H2 molecules. This effect may additionally change the
transfer rate.

A possible explanation of the nonmonotonic Z-
dependence as well as the unexpected ratio of the µp
and µd transfer rates was suggested in [21]. The inter-
ference of waves describing the relative motion in differ-
ent channels was revealed to be very significant. The fact
is that the WKB approximation, on which the standard
Landau-Zener formula is based, may be not applicable in
the case of the muon transfer to light elements. Indeed,
the well-known parameter (dλ−/dr) evaluated in relevant
crossing points is not very small. A modification of the
Landau-Zener formula for such a case was made in [21].
The other approximations coincided practically with those
used in [15,18]. It was found in this way that the trans-
fer rate was an oscillating function of the dimensionless
parameter

ζ = [2(dλ−/dr)]−2/3. (16)

The right side of this formula is taken in the crossing point
which makes the main contribution to the muon transfer.
At thermal energies the parameter ζ is:

ζ =
(

3Z
√

2Mn

8rc

)2/3

. (17)
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Here the mass Mn and the internuclear distance rc corre-
sponding to the crossing point are expressed in muon-atom
units (m.a.u. in short):

� = e = mµ = 1, (18)

e is the proton charge, mµ is the muon mass, the length
and energy units are respectively equal to 2.56×10−11 cm
and 5.63 keV. The relation (17) means that the transfer
rate oscillates with changing Z and Mn. For heavy ele-
ment ζ 	 1, and the WKB approximation is applicable.
For light elements the values of ζ are around unity, and
the oscillations are significant. For example, ζ found for
the transfer from µp to neon is very close to the position of
a minimum of the transfer rate. Accordingly, this reaction
is suppressed. The transfer from µd to neon is much faster
because the corresponding ζ is close to the position of a
maximum. The numerical values of the transfer rate to
neon obtained in [21] are in a reasonable agreement with
the experimental values (4) and (13). Good results were
also obtained for the transfer to N and O [19]. Concern-
ing the dependence of the transfer cross-section on the
relative velocity predicted in [21], the inverse v law was
again derived for thermal energies. So, the difference of
the transfer rates to neon measured in the gaseous and
liquid mixtures remained unexplained. In the subsequent
paper [22] the transfer to light elements was treated at
Ec ∼ 0.2 eV by adding the contribution of the P-wave.
However, the S-wave transfer cross-section was found to
be still proportional to v−1. This result contradicts the
expected dependence (12).

Recently the muon transfer from hydrogen isotopes
to some elements was treated on the basis of integro-
differential Faddeev-Hahn-type equations [23,24]. The cal-
culations were made within the two-state approximation,
i.e. only the 1S state of muonic hydrogen and one state of
the µZ atom were taken into account in the reaction (8).
The muon charge distribution in the entrance and trans-
fer channels was described with hydrogenlike bound-state
wavefunctions. Only the S-wave in the entrance chan-
nel was considered. The electron screening was not intro-
duced. The transfer rate evaluated within this approach
proved to be in a good agreement with experimental re-
sults. In particular, the rate (13) of the muon transfer from
deuterium to neon was reasonably reproduced. The trans-
fer from protium to neon was not treated. One should
make a few remarks on these papers. An important ad-
vantage of the method used there is the correct descrip-
tion of the relative motion of the fragments at large in-
teratomic separations in both the entrance and transfer
channels. This is achieved due to each channel being de-
scribed in the proper Jacobi coordinates. However, some
disadvantages should be indicated. The first one is the use
of the hydrogenlike muon wavefunctions. In this case the
muon charge distribution in each channel is frozen, it is
not changed as the fragments approach each other. Such
a situation seems to be unsatisfactory in describing the
entrance channel because the polarization of the charge
cloud of muonic hydrogen in the Coulomb field of the Z-
atom is fully ignored. In particular, the polarization leads

to the appearance of the well-known long-range attrac-
tion. If the electron screening is not taken into account,
the corresponding potential is (in muon-atom units):

Up(R) = −βZ
2

2R4
. (19)

β is the dipolar polarizability of µH, R is the distance be-
tween the nucleus Z and the center of mass of µH. It may
be expected that this attraction is very significant at low
collision energies. For example, according to [21], the qua-
sicrossing of terms responsible for the muon transfer from
protium to neon occurs at R ∼ 26 m.a.u. The formula (19)
yields Up about 4 eV. This is much greater than thermal
energies. Moreover, because of its long-range nature this
attraction appreciably changes the S-wave phase. The au-
thors of [23,24] could not obtain the potential (19) in any
natural way and had to add it artificially. In principle,
the polarization may be partly taken into account within
their method. At least the 2P state of muonic hydrogen
should be included into consideration. However, this way
does not look attractive. Indeed, the polarization is sig-
nificant at low collision energies, but its description needs
the addition of the 2P state with the excitation energy
of 2 keV. It should be also noted that the authors of the
papers discussed used an incorrect value of the dipolar po-
larizability. They took β = 9/2 m.a.u. while the correct
value is:

β =
9

2m3
µH

. (20)

mµH is the reduced mass of muonic hydrogen. The pres-
ence of its cube in the denominator of this formula follows
from the definition of β:

β = 2
∑

k

|(dz)0k|2
Ek − E0

. (21)

dz is the projection of the dipole moment of the µH atom
on the direction of an external field, k labels the atomic
P-states, the subscript 0 means the 1S state, E0 and Ek

are the energies of the corresponding states. As the atomic
wavefunctions involve the reduced mass of µH, the square
of the dipole matrix element is proportional to m−2

µH. One
more power of this mass appears in the energy denomi-
nator. The factor m−3

µH in (20) is especially significant for
muonic protium. In this case

β ≈ 6.20, (22)

instead of 4.5 used in [23,24]. One more disadvantage of
these papers is the neglect of the electron screening. Ac-
cording to [15], the electron screening in the entrance
channel of the reaction (8) reduces the transfer cross-
section by a factor of Z1/3. For the transfer to neon it
is about 2.

1.3.2 A preliminary discussion of the present method

The consideration presented above shows that an ade-
quate description of the entrance channel of the transfer
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reaction should include effects of the muon charge cloud
polarization. This may be achieved by using two-center
muon wavefunctions. A realization of such an approach
called the perturbed stationary state (PSS) method is
well-known [25]. The three-body problem is formulated in
coordinates describing the muon motion in the field of two
fixed nuclei. For the reaction (8) these are the vector RHZ

joining the nuclei H and Z and the vector connecting the
midpoint of RHZ with the muon. The use of these coordi-
nates seems to be inconvenient because they describe the
relative motion of the fragments at large separations in
neither of the binary channels. A more attractive way was
suggested in treating the muon transfer between hydrogen
isotopes [26]. Each binary channel was considered in its
natural Jacobi coordinates corresponding to the asymp-
totic separation into the fragments. The problem of the
muon motion in the field of two fixed Coulomb centers (the
two-center problem) was separately formulated in each of
the channels. The three-body wavefunction was expanded
in solutions of these problems. Finally, a set of coupled
integro-differential equations for relative motion functions
was obtained. So, this approach provides the asymptot-
ically correct description of the binary channels. As the
two-center muon wavefunctions are used, the muon charge
distribution in each of the channels is flexible. It is adia-
batically deformed as the distance between the fragments
changes so that polarization effects are taken into consid-
eration. Moreover, the migration of the muon charge from
one nucleus to another caused by quasicrossings of adia-
batic two-center terms is also included. This feature seems
to be very important for the muon transfer. Unfortunately,
a practical realization of this method needs solving a com-
plicated set of coupled integro-differential equations. For
this reason we use a simplified approach. As low collision
energies are also of interest for us, the entrance channel is
described as accurately as possible. Similarly to [26], the
Jacobi coordinates relating to this channel are used, and
the two-center problem is formulated in these coordinates.
This way will be seen to provide the correct dissociation
limit in the entrance channel and the polarization attrac-
tion (19) with the correct dipolar polarizability (22). No
spurious long-range interactions appear in this channel.
Moreover, the electron screening is easily introduced. Our
main simplification is the use of a group of solutions of the
above two-center problem for describing the transfer chan-
nel. These solutions are localized at the heavier Coulomb
center in the separated atoms limit, and, in this sense,
somehow describe the muon transfer. However, their use
means that the transfer channel is treated in the Jacobi
coordinates of the entrance channel. Actually, the two-
center solutions discussed are not correlated to any indi-
vidual states of the µZ atom. Of course, a number of the
well-known difficulties arise immediately. The dissociation
limits in the transfer channel are incorrect, and spurious
long-range potentials appear there. It is clear that the par-
tial transfer cross-sections to individual states of the µZ
atom can not be obtained in this way. However, on the
whole a group of solutions localized asymptotically at the
heavier Coulomb center may be considered to describe the

Fig. 1. The Jacobi coordinates of the entrance channel and
relevant notations. C3 is the center of mass of the three-body
system, C2 is the one of the pair µH, MR is the midpoint of
the vector R.

transition from the entrance channel to the transfer one,
and the total transfer cross-section may be evaluated. Ac-
tually, this is reduced to solving a set of coupled ordinary
differential equations for relative motion functions. Un-
like the standard PSS method [25] in which the correct
asymptotic description of both the entrance and transfer
channels meets serious difficulties (incorrect dissociation
limits, etc.), the present approach drives these difficulties
into the transfer channel. This seems to be reasonable be-
cause the relative motion energies in the transfer channel
are much greater than the collision energy in the entrance
one. For example, the analysis of energy spectra of the
delayed K-series X-rays made in [14] for the muon trans-
fer from protium to neon indicates that states of muonic
neon with the principle quantum number n = 6 are ini-
tially populated. In this case the relative motion energy
in the transfer channel is about 5.2 keV.

2 The formalism

2.1 The choice of variables in the Coulomb three-body
problem

Muon-atom units (18) are used in this section. First, let
us consider the system consisting of a negative muon µ
and two pointlike nuclei H and Z (Fig. 1). In the center-
of-mass frame of this system its Hamiltonian is5:

Ĥ = − 1
2Mr

∆R + Ĥµ +
Z

RHZ
, (23)

Ĥµ = − 1
2mµH

∆r − 1
r
− Z

rµZ
. (24)

The vectors R and r are the Jacobi coordinates of the
entrance channel of the reaction (8). r joins the nucleus H
and the muon, R connects the center of mass of the pair
µH with the nucleus Z. Mr is the reduced mass of the
nucleus Z with respect to µH:

M−1
r = (MH + 1)−1 +M−1

Z , (25)
5 The fine and hyperfine structure effects are ignored.
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MH and MZ are the nuclear masses. mµH is the reduced
mass of muonic hydrogen:

m−1
µH = M−1

H + 1. (26)

RHZ and rµZ are the distances between the particles in-
dicated in the subscripts.

The part Hµ of the Hamiltonian may be rewritten as
follows [26]:

Ĥµ = mµH ĥµ, (27)

ĥµ = −1
2
∆s − 1

|s + R
2 |

− Z ′

|s − R
2 |
. (28)

The vector s is directed from the midpoint of R to the
muon (Fig. 1):

s = mµH r− R
2
. (29)

The quantity Z ′ is:

Z ′ =
Z

mµH
. (30)

ĥµ is seen to be the Hamiltonian of the muon in the field of
two fixed Coulomb centers, the charges of which are equal
to unity and Z ′. The unit charge is placed in the center of
mass of the pair µH, the position of the chargeZ ′ coincides
with the one of the nucleus Z. For the muon transfer from
protium to neon

Z ′ ≈ 11.1. (31)

The three-body Hamiltonian Ĥ may be also written in
the Jacobi coordinates of the transfer channel, and a two-
center Hamiltonian similar to ĥµ may be separated there.
In this case the charges of the Coulomb centers are equal
to Z and m−1

µZ (mµZ is the reduced mass of the µZ atom).
The former is placed in the center of mass of µZ, the po-
sition of the latter coincides with the one of the hydrogen
nucleus. An expansion of the three-body wavefunction in
a finite set of eigenstates of these two-center Hamiltonians
seems to be a good approximation for the transfer reac-
tion. However, as it was explained in Section 1.3.2, only
eigenstates of ĥµ are used in our simplified approach.

The vectors R and r are initially related to a Carte-
sian coordinate frame K, the axes of which are somehow
fixed and the origin is the center of mass of the three-body
system. It should be noted that this center lies at the vec-
tor R (Fig. 1). Let (R, Θ, Φ) be the spherical coordinates
of R in the frameK. In our problem it is convenient to use
another frame K ′, the z-axis of which is directed along R.
It is obtained from K by the rotation through the Eule-
rian angles (Φ, Θ, 0). The origins of K and K ′ coincide.
The Cartesian components of the vector r in the frames
K ′ and K are related as follows:

x′ = x cosΘ cosΦ + y cosΘ sinΦ − z sinΘ ,

y′ = −x sinΦ + y cosΦ ,

z′ = x sinΘ cosΦ + y sinΘ sinΦ + z cosΘ .

(32)

One more relevant frame K ′′ is obtained from K ′ by the
translation of the origin to the midpoint of R. The x- and
y-axis of K ′′ are parallel to the ones of K ′, the z-axis is
common. The eigenstates of ĥµ are constructed in prolate
spheroidal coordinates of the muon defined in K ′′:

ξ =
(rµC2 + rµZ)

R
; η =

(rµC2 − rµZ)
R

. (33)

rµC2 and rµZ are the distances from the muon to the center
of mass of µH and the nucleus Z respectively (Fig. 1). The
third spheroidal coordinate is the azimuthal angle ϕ lying
in the xy-plane of K ′′. The coordinates of the center of
mass of the pair µH where the fixed unit charge involved
into ĥµ is placed are: ξ = +1, η = −1. The coordinates
of the charge Z ′ are: ξ = +1, η = +1. The Cartesian
components of the vector r in the frame K ′ are expressed
in terms of ξ, η and ϕ as follows:


x′ = r⊥ cosϕ,

y′ = r⊥ sinϕ,

z′ = R′(1 + ξη).

(34)

The quantities r⊥ and R′ are:

r⊥ = R′√(ξ2 − 1)(1 − η2); R′ =
R

2mµH
. (35)

The eigenstates of ĥµ are functions of the spheroidal co-
ordinates and satisfy the equation:

ĥµ ψjm(ξ, η;R)
exp(±imϕ)√

2π
=

εjm(R)ψjm(ξ, η;R)
exp(±imϕ)√

2π
. (36)

The dependence on ϕ is explicitly indicated here. The non-
negative integer m is the modulus of the magnetic quan-
tum number, the subscript j denotes a set of the other
quantum numbers needed to specify the state. For a bound
state these are the numbers nξ and nη of nodes in the vari-
ables ξ and η or the parabolic quantum numbers n1 and n2

in the limit R → ∞ [25,27]. εjm(R) is the eigenvalue of
ĥµ. The equation (36) is solved at a fixed R so that R is
involved in the eigenstates as a parameter. The real func-
tions ψjm(ξ, η;R) with the same m are orthonormal:∫

ψim(ξ, η;R)ψjm(ξ, η;R) dτ = δij ;

dτ = (R/2)3 (ξ2 − η2) dξ dη. (37)

The integration region is: 1 ≤ ξ <∞ ; −1 ≤ η ≤ +1. The
orthonormalization with respect to the magnetic quantum
number is due to the factors exp(±imϕ)/

√
2π.

Let the wavefunction of the three-body system be ini-
tially specified as a function of the components of the
vectors R and r in the coordinate frame K. The inver-
sion of (32) and the relations (34) allow one to transform
it to the new variables (R, Θ, Φ, ξ, η, ϕ). Accordingly,
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the transition to these variables is to be done in the three-
body Hamiltonian (23). First of all this concerns the op-
erator ∆R which initially includes partial derivatives with
respect to the components of R at fixed values of the ones
of r in the frame K. In transforming this operator we fol-
low the convenient formalism developed in [28]. It should
be emphasized that our final results differ from those ob-
tained in [28] because of another choice of the three-body
coordinates. The transformation is made in two steps. At
the first one the variables (R, Θ, Φ, x′, y′, z′) are in-
troduced with the help of (32). The operator ∆R is split
into two terms specified by different selection rules with
respect to the magnetic quantum number m:

∆R = ∆0 +∆1. (38)

The first term does not change m:

∆0 =
∂′2

∂R2
+

2
R

∂′

∂R
− 1
R2

(
Ĵ2 + l̂2 − 2l̂2z′

)
. (39)

The prime denotes the differentiation at fixed (x′, y′, z′).
Ĵ2 is the square of the operator Ĵ of the orbital angular
momentum of the three-body system with respect to its
center of mass:

Ĵ = L̂ + l̂; L̂ = −i [R×∇R]; l̂ = −i [r×∇r]. (40)

l̂2 is the square of the vector l̂, l̂z′ is its z-component in
the frame K ′. In terms of the variables considered the
components of Ĵ in the frame K ′ are:

Ĵx′ =
i

sinΘ
∂′

∂Φ
+ cotΘ l̂z′ ; Ĵy′ = −i ∂

′

∂Θ
; Ĵz′ = l̂z′ .

(41)
In the frame K we have:

Ĵ± = exp(±i Φ)

(
± ∂′

∂Θ
+ i cotΘ

∂′

∂Φ
+

l̂z′

sinΘ

)
;

Ĵz = −i ∂
′

∂Φ
. (42)

Here Ĵ± = Ĵx ± iĴy. The Cartesian components of Ĵ in
the frames K ′ and K are related similarly to (32). The
operator Ĵ2 is:

Ĵ2 = −
[

1
sinΘ

∂′

∂Θ
sinΘ

∂′

∂Θ

+
(

1
sinΘ

∂′

∂Φ
− i l̂z′ cotΘ

)2
]

+ l̂2z′ . (43)

The second term in (38) varies m by unity:

∆1 =
2
R2

(̂
lĴ − l̂2z′

)

=
2
R2

(
l̂x′ l̂z′ cotΘ − i l̂y′

∂′

∂Θ
+

i l̂x′

sinΘ
∂′

∂Φ

)
. (44)

l̂x′ and l̂y′ are the x- and y-components of l̂ in the frame
K ′. The term (−∆1/2Mr) in the three-body Hamiltonian
describes the Coriolis interaction.

The second step is the transition to the variables
(R, Θ, Φ, ξ, η, ϕ) with the help of (34). The operators
introduced above are transformed as follows:

∂′

∂R
=

∂

∂R
+
d̂

R
. (45)

The R-differentiation in the right side of this formula is
made at fixed values of the spheroidal coordinates. The
operator d̂ is:

d̂ = − 1
(ξ − η)

[(
ξ2 − 1

) ∂
∂ξ

+
(
1 − η2

) ∂

∂η

]
. (46)

The partial derivatives with respect to the spheroidal co-
ordinates are evaluated at fixed (R, Θ, Φ) so that ∂/∂R
and d̂ are commutative. The second R-derivative involved
into (39) is obtained by applying (45) twice. The compo-
nents of l̂ take the form:

l̂± = exp(±iϕ)
(
±â+ i b̂

∂

∂ϕ

)
; l̂z′ = −i ∂

∂ϕ
. (47)

Here l̂± = l̂x′ ± il̂y′ , and the operators â and b̂ are:

â =

√
(ξ2 − 1)(1 − η2)

(ξ − η)

(
∂

∂ξ
− ∂

∂η

)
;

b̂ =
1 + ξη√

(ξ2 − 1)(1 − η2)
. (48)

The square of l̂ is:

l̂2 =
(
b̂2 + 1

)
l̂2z′ −

(
â+ b̂

)
â. (49)

Concerning the derivatives with respect to the angles Θ
and Φ involved into (41–44), they are now evaluated at
fixed spheroidal coordinates. Indeed, the relations (34) do
not involve these angles so that no additional transforma-
tion of the derivatives is needed. The two-center Hamil-
tonian ĥµ is expressed in terms of the spheroidal coordi-
nates in the standard way [25]. Finally, the distance RHZ

involved into the Coulomb repulsion of the nuclei is:

RHZ = R

√(
ξ + η

2MH

)2

+
(1 + ξη)
MH

+ 1. (50)

The above-mentioned differences of the present results
from those obtained in [28] are particularly manifested
in the structure of the operators d̂, â and b̂. Moreover,
as the authors of [28] did not use any Jacobi coordinates,
they had a number of additional terms in the three-body
Hamiltonian. For example, the operator (∇R∇r +∇r∇R)
appeared. Such terms are absent in the present consider-
ation.
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2.2 Basis functions

The three-body Hamiltonian commutes with the opera-
tors Ĵ2, Ĵz as well as with the operator P̂ of the coordi-
nate inversion. A convenient basis in which the three-body
wavefunction may be expanded consists of eigenstates of
these three operators. We additionally demand the basis
functions to be eigenstates of the two-center Hamiltonian
ĥµ. Before constructing this basis let us consider how the
variables (R,Θ,Φ, ξ, η, ϕ) are transformed under the in-
version. The inversion reverses the sign of the Cartesian
components of the vectors R and r in the frame K. The
transformation of the angles Θ and Φ is obvious:{

Θ → π −Θ,

Φ→ π + Φ.
(51)

The relations (32) yield:

x′ → −x′,
y′ → y′,

z′ → z′.

(52)

The transformation of the spheroidal coordinates follows
from (34): 


ξ → ξ,

η → η,

ϕ→ π − ϕ.

(53)

As only the angular variables are changed, the prob-
lem is to construct angular functions which are eigen-
states of Ĵ2, Ĵz and P̂. Let us consider the Wigner func-
tion DJ

Mm(Φ,Θ, ϕ) which is the eigenstate of Ĵ2, Ĵz and
Ĵz′ = l̂z′ with the eigenvalues J(J + 1), M and m [29]. It
is transformed under the inversion as follows:

DJ
Mm(Φ,Θ, ϕ) → (−1)J−mDJ

M(−m)(Φ,Θ, ϕ). (54)

If m 
= 0, the Wigner functions involved here are different,
and the angular functions required are their even and odd
combinations. It is convenient to specify these combina-
tions as follows:

Υ JP
Mm(Φ,Θ, ϕ) =

√
2J + 1
4π

[
(−1)mDJ

Mm(Φ,Θ, ϕ)

+ P (−1)JDJ
M(−m)(Φ,Θ, ϕ)

]
. (55)

P = ±(−1)J is the eigenvalue of the operator P̂:

P̂Υ JP
Mm = P Υ JP

Mm. (56)

Υ JP
Mm is also the eigenstate of l̂2z′ (but not l̂z′) with the

eigenvalue m2. The functions (55) are orthonormal:

π∫
0

sinΘ dΘ

2π∫
0

dΦ

2π∫
0

dϕ
(
Υ JP

Mm

)∗
Υ J′P ′

M ′m′ =

δJJ′ δPP ′ δMM ′ δmm′ . (57)

If m = 0, both the Wigner functions in (54) are reduced
to the ordinary spherical function YJM (Θ,Φ) so that the
dependence on ϕ disappears and the angular functions
satisfying the conditions (56, 57) are:

Υ JP
Mm=0(Φ,Θ, ϕ) =

YJM (Θ,Φ)√
2π

. (58)

In this case the parity is unambiguously specified by the
quantum number J : P = (−1)J .

So, our basis functions have the structure:

ΨJP
Mjm(R,Θ,Φ, ξ, η, ϕ) =

χJP
jm(R)
R

Υ JP
Mm(Φ,Θ, ϕ)ψjm(ξ, η;R). (59)

χJP
jm(R) is a radial function depending on the indicated

quantum numbers.

2.3 Coupled equations

In the center-of-mass frame of the three-body system the
transfer reaction (8) is described by the Schrödinger equa-
tion:

Ĥ Ψ = E Ψ. (60)

The Hamiltonian Ĥ was introduced in (23). The en-
ergy E is:

E = EµH(1S) +Ec. (61)

The first term is the energy of the ground state of muonic
hydrogen:

EµH(1S) = −mµH

2
. (62)

The collision energy Ec is:

Ec =
Mrv

2

2
. (63)

v is the velocity of the relative motion of the µH atom and
the nucleus Z at infinite separation. The reduced masses
mµH and Mr were introduced in (25, 26).

The solution of the Schrödinger equation specified ad-
ditionally by the quantum numbers J , M and P is sought
in the form of an expansion in the basis functions (59):

ΨJP
M =

∑
jm

χJP
jm(R)
R

Υ JP
Mm(Φ,Θ, ϕ)ψjm(ξ, η;R). (64)

The sum is taken over all the quantum numbers (jm) of
the two-center problem (36). The expansion is now substi-
tuted into the equation (60), the result is multiplied by a
function

(
Υ JP

Mm′
)∗
ψim′ and integrated over the variables

(Θ,Φ, ξ, η, ϕ). This procedure yields the set of coupled
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equations for the radial functions:

− 1
2Mr

d2χJP
jm

dR2
+

{ [
J(J + 1) − 2m2

]
2MrR2

+ Ujm(R)

}
χJP

jm

+
∑
i�=j

{
Wjm,im(R)

dχJP
im

dR

+
[
U

(a)
jm,im(R) + U

(s)
jm,im(R)

]
χJP

im

}

+
∑

i

∑
m′=m±1

Vjm,im′ (R)χJP
im′ = Ec χ

JP
jm . (65)

The matrix elements appeared here are combinations
of integrals of two-center wavefunctions ψjm(ξ, η;R)
and their derivatives. The integrals are taken over the
spheroidal coordinates ξ and η. The corresponding vol-
ume element dτ and the integration limits are specified
in (2.1). We have:

Wjm,im(R) = − 1
2Mr

∫
dτ

(
ψjm

∂′ψim

∂R
− ψim

∂′ψjm

∂R

)
,

U
(a)
jm,im(R) =

1
2
dWjm,im(R)

dR
. (66)

∂′/∂R operates on the function ψim(ξ, η;R) in accordance
with (45). Both the two-center wavefunctions involved
here have the same m. The matrices considered are an-
tisymmetric:

Wjm,im(R) = −Wim,jm(R),

U
(a)
jm,im(R) = −U (a)

im,jm(R). (67)

The diagonal elements (j = i) vanish.
The next matrix element U (s)

jm,im(R) also couples the
two-center wavefunctions with the same m. It is:

U
(s)
jm,im(R) = U

(1)
jm,im(R) +U

(2)
jm,im(R) +U

(3)
jm,im(R). (68)

The first term is contributed by operators involved
into (39):

U
(1)
jm,im(R) =

1
2Mr

[
Fjm,im(R) +

Gjm,im(R)
R2

]
,

Fjm,im(R) =
∫
dτ

(
∂′ψjm

∂R

)(
∂′ψim

∂R

)
,

Gjm,im(R) =
∫
dτ (âψjm) (âψim)

+m2

(∫
dτ ψjmb̂

2ψim + δji

)
. (69)

The second term is the eigenstate of the Hamiltonian
Hµ (27) counted from the energy of µH(1S):

U
(2)
jm,im(R) =

[
mµH εjm(R) − EµH(1S)

]
δji. (70)

Finally, the third term is the matrix element of the
Coulomb repulsion of the nuclei:

U
(3)
jm,im(R) = Z

∫
dτ

ψjm ψim

RHZ
. (71)

The matrix (68) is symmetric:

U
(s)
jm,im(R) = U

(s)
im,jm(R). (72)

Its diagonal elements are separated in the set (65):

Ujm(R) ≡ U
(s)
jm,jm(R). (73)

It is convenient to write them similarly to (68):

Ujm(R) = U
(1)
jm(R) + U

(2)
jm(R) + U

(3)
jm(R). (74)

The diagonal elements of (69–71) are taken here.
The last sum in the left side of (65) involves the ma-

trix elements of the Coriolis interaction which couples the
functions ψjm and ψi(m±1):

Vjm,im′(R) = − Nm′

4MrR2
δm′(m±1)

√
(J ∓m)(J ±m+ 1)

×
[
±
∫
dτ
(
ψjm â ψim′ − ψim′ â ψjm

)
+
(
2m± 1

) ∫
dτ ψjm b̂ ψim′

]
. (75)

The factor Nm′ =
√

2 at m′ = 0, otherwise it is equal to
unity.

The set of coupled equations (65) explicitly includes
the quantum numbers J and m. The latter is involved
into the two-center wavefunctions ψjm and, as a result,
into the matrix elements. The parity quantum number P
is formally absent in the equations. However, the struc-
ture of the set depends substantially on P . For example,
at J = 0 the two-center eigenstates with m = 0 are in-
volved only into the the expansion (64) of the even three-
body wavefunction (P = +1). The expansion of the odd
wavefunction (P = −1) does not include these states. Ac-
cordingly, the set of coupled equations is different in these
cases.

2.4 The behaviour of matrix elements at large
interatomic separations

2.4.1 The entrance channel

The main idea of the present approach is to provide the
asymptotically correct description of the entrance channel
of the transfer reaction (8) at large distances R. In this
limit the bound eigenstates of the two-center problem (36)
are divided into two groups. The states of one group are
localized near the left center which has the unit charge and
placed in the center-of-mass of the µH atom (Fig. 1). The
other states are localized near the right center Z ′ (30). The
simplest way to describe the entrance channel is to take
into account the only state of the left-center group in the
expansion (64). The quantum numbers of this state are:

m = n1 = n2 = 0; n = 1. (76)
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n1 and n2 are the parabolic quantum numbers in the
limit R → ∞ [25,27], n is the principle quantum num-
ber in the same limit:

n = n1 + n2 +m+ 1. (77)

We shall mark all the quantities related to this state with
the subscript 0. In the limit considered the eigenstate ψ0

and the corresponding eigenvalue ε0(R) of the two-center
problem are:

ε0(R → ∞) = −1
2
; ψ0 ∝ exp (−mµH r). (78)

The atomic wavefunction of µH(1S) with the correct re-
duced mass is seen to be obtained. This is due to the
unit charge in the two-center problem being placed in
the center-of-mass of muonic hydrogen. The argument of
the exponent in (78) is the distance from this charge to the
muon. The eigenvalue of the muon Hamiltonian Hµ (27)
tends to the correct dissociation limit (62):

mµHε0(R → ∞) = EµH(1S). (79)

The next step is to be convinced that the potential
U0(R) (74) includes the polarization attraction (19) and
no spurious long-range interactions. With this purpose let
us consider an asymptotic expansion of U0(R) in powers
of R−1. We confine ourselves to taking into account the
terms up to R−4 inclusive. The asymptotic expansion of
ε0(R) is well-known [30]:

ε0(R) = −1
2
− Z ′

R
− 9Z ′2

4R4
. (80)

Its substitution into (70) yields:

U
(2)
0 (R) = −mµH

(
Z ′

R
+

9Z ′2

4R4

)
. (81)

The next term U
(3)
0 (R) is obtained by averaging the

Coulomb repulsion of the nuclei over the state considered.
As the wavefunction ψ0 is localized near the left center, it
is convenient to write the Coulomb repulsion as follows:

Z

RHZ
≈ Z

R

(
1 +

∞∑
k=1

M(k)

Rk

)
. (82)

The multiple moments M(k) specify the distribution of
the charge H with respect to the center-of-mass of the µH
atom:

M(k) = rk
H Pk(cos θH). (83)

The vector rH connects the center-of-mass with the hy-
drogen nucleus (Fig. 1):

rH = −mµH

MH
r. (84)

θH is the angle between the vectors rH and R, Pk(cos θH)
is the Legendre polynomial. Actually, the moments M(k)

are polynomials in powers of the length of the vector r and
its projection z′ on the direction of R. The relations (34)
allow one to write the multipole moments in terms of the
spheroidal coordinates ξ and η. For example, the dipole
moment (k = 1) is:

M(1) = −mµH

MH
z′ = − R

2MH
(1 + ξ η). (85)

Averaging the expansion (82) yields:

U
(3)
0 (R) =

Z

R

[
1 +

∞∑
k=1

M(k)
0 (R)
Rk

]
,

M(k)
0 (R) =

∫
dτ ψ2

0(ξ, η;R)M(k). (86)

To evaluate the integrals involved here the two-center
wavefunction ψ0 was also expanded in powers of
R−1 [30,31]. In the approximation considered only the
leading contribution of the dipole term M(1)

0 (R) proves
to be significant. It is proportional to R−2. Finally, we
have:

U
(3)
0 (R) =

Z

R
− 9ZZ ′

2MHR4
. (87)

A more complicated problem is to obtain the asymptotic
expansion of the nonadiabatic potential U (1)

0 (R) which is
the diagonal matrix element (69). Its analytical solution
needs tedious algebraic calculations. To avoid them we
constructed U

(1)
0 (R) numerically. The terms up to R−6

inclusive were taken into account in the asymptotic ex-
pansion of the wavefunction ψ0, and the relevant integrals
over the spheroidal coordinates ξ and η were evaluated
with the help of Laguerre and Gauss-Legendre quadra-
tures. This way indicated that at large R the potential
U

(1)
0 (R) fell proportionally to R−6:

U
(1)
0 (R) ∝ R−6. (88)

In our approximation this term is to be omitted. So, the
desired asymptotic expansion of the potential U0(R) is
the sum of the expressions (81, 87). The substitution of
the value (30) for Z ′ shows that the terms linear in R−1

are exactly cancelled, and only the terms proportional to
R−4 remain. The result may be written similarly to the
polarization attraction (19):

U0(R) = −β0Z
2

2R4
. (89)

The quantity β0 is:

β0 = β mµH

(
1 +

mµH

MH

)
. (90)

β is the exact dipolar polarizability (20). It is seen that
β0 
= β. However, their numerical values are very close.
For muonic protium we have:

β0 ≈ 0.99 β. (91)
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The one percent polarizability deficit is due to the
Coulomb repulsion of the nuclei being nondiagonal in the
two-center basis. The corresponding correction to the po-
tential can be easily found within the perturbation theory.
It is:

∆U0(R) =
∑
i�=0

(
U

(3)
0i

)2

E0 − Ei
. (92)

The subscript i labels the two-center eigenstates with
m = 0, Ei are the corresponding eigenvalues of the muon
Hamiltonian Hµ (27), U (3)

0i are the matrix elements (71).
The leading term of this correction is also proportional
to R−4. It is contributed by the dipole term in the ex-
pansion (82). The two-center wavefunctions and energies
are taken in the limit R → ∞, i.e. they coincide with the
atomic ones. In this case the sum in (92) is obviously re-
duced to that involved into the expression (21) for β. We
obtain:

∆U0(R) = −∆β0Z
2

2R4
, (93)

where the correction to the polarizability β0 is:

∆β0 = β

(
mµH

MH

)2

. (94)

The sum of β0 and ∆β0 is exactly equal to β:

β0 +∆β0 = β. (95)

So, taking into account the only left-center state (76) al-
ready provides a good description of the entrance chan-
nel at large R: the dissociation limit is correct, no spuri-
ous long-range interactions appear (at least in the terms
up to R−4 inclusive), the polarization attraction is repro-
duced with one percent accuracy. Below we confine our-
selves to this description. For this reason the asymptotic
behaviour of the nondiagonal matrix elements coupling
different states of the left-center group in the set (65) is
not treated here.

2.4.2 The transfer channel

To describe the transfer channel of the reaction (8) within
our approach it is necessary to take into account states of
the right-center group in the expansion (64). We consider
only bound states with m = 0. The subscript m is omit-
ted below. The label j additionally marking these states
includes their parabolic quantum numbers n′

1 and n′
2 at

infinite R. The principal quantum number is:

n′ = n′
1 + n′

2 + 1. (96)

In the limit R → ∞ the states examined do not describe
the µZ atom, but correspond to the problem of the muon
motion in the field of the fixed Coulomb center Z ′. In par-
ticular, their wavefunctions do not include the reduced
mass of the µZ atom at all. This results from the Jacobi

coordinates used being unnatural for the transfer chan-
nel. Consequently, the asymptotic expansion of the po-
tential Uj(R) (74) may be expected to involve spurious
contributions. The way of constructing this expansion is
similar to that explained in Section 2.4.1. Retaining the
terms up to R−2 inclusive we have [30]:

U
(2)
j (R) = mµH εj(R) − EµH(1S),

εj(R) = −1
2

(
Z ′

n′

)2

− 1
R

+
3n(n′

1 − n′
2)

2Z ′R2
. (97)

To obtain the expansion of the Coulomb repulsion it is
convenient to write the internuclear distance as follows:

RHZ =
1

mµH

∣∣∣∣R +
mµH

MH
rµZ

∣∣∣∣ . (98)

The vector rµZ connects the nucleus Z with the muon
(Fig. 1). Its length may be treated to be much less than
R because the two-centre wavefunctions are now localized
near the right center. The Coulomb repulsion is then ex-
panded in multipole moments related to the right center.
Averaging it over the state ψj yields:

U
(3)
j (R) = mµH

Z

R

[
1 − 3n′(n′

1 − n′
2)

2Z ′R
mµH

MH

]
. (99)

The expansion of the nonadiabatic potential U (1)
j (R) is:

U
(1)
j (R) =

1
2Mr

(
Z ′

n′

)2

+
αj

R2
. (100)

The term linear in R−1 is absent here. This result was ob-
tained analytically. The coefficient αj was evaluated nu-
merically. In treating the muon transfer from protium to
neon the following right-center states will be of interest
for us:

n′
1 = m = 0; n′

2 = 5, 6 and 7. (101)

The principle quantum number n′ is respectively equal to
6, 7 and 8. The values of αj found for these states are
given in Table 1.

It is convenient to write the potential Uj (R) in terms
of the distance Rt between the nucleus H and the center-
of-mass of the µZ atom. At large R it is:

Rt =
R

mµH
. (102)

This relation follows from (98) at rµZ = 0. Finally, we
have:

Uj (R) = U
(∞)
j +

(Z − 1)
Rt

− Dj

R2
t

. (103)

U
(∞)
j is the dissociation limit for the two-center state con-

sidered:
U

(∞)
j = U

(∞)
j (µZ) +∆U

(∞)
j . (104)

Here the first term is the correct value of the dissociation
limit counted from EµH(1S):

U
(∞)
j (µZ) = EµZ(n′) − EµH(1S). (105)
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Table 1. The parameters of the asymptotic expansion (103) for the states (101). The upper values of U
(∞)
j (µZ), ∆U

(∞)
j and

U
(∞)
j are given in muon-atom units, the lower ones–in keV. The other values are in muon-atom units.

n′
2 U

(∞)
j (µZ) ∆U

(∞)
j U

(∞)
j αj Dj(µZ) ∆Dj Dj

(105) (108) (104) (100) (110) (111) (109)

5 −0.932 +0.020 −0.912 −0.165 +4.76 −4.61 +0.15

−5.24 +0.11 −5.13

6 −0.565 +0.014 −0.551 −0.285 +6.66 −6.38 +0.28

−3.18 +0.08 −3.10

7 −0.327 +0.011 −0.316 −0.433 +8.88 −8.44 +0.44

−1.84 +0.06 −1.78

EµZ(n′) is the energy of the µZ atom:

EµZ(n′) = −mµZ

2

(
Z

n′

)2

. (106)

mµZ is the reduced mass of the atom:

m−1
µZ = M−1

Z + 1. (107)

The addition ∆U (∞)
j is:

∆U
(∞)
j = −EµZ(n′)

(
m−1

µHm
−1
µZ − 1

)2

. (108)

As it was expected, the dissociation limit is obtained to be
incorrect. It differs from its correct value (105) due to the
addition ∆U (∞)

j . However, this addition is relatively small
for the states (101) (Tab. 1). It shifts the dissociation limit
by a few percent.

The second term in (103) correctly describes the
Coulomb repulsion of the nucleus H and the µZ atom
treated as a point charge (Z−1). The term proportional to
R−2

t corresponds to the interaction of a dipole moment Dj

with the electric field of H. This moment may be written
as follows:

Dj = Dj(µZ) +∆Dj . (109)

Here the first term is the component of the dipole moment
of the atomic |n′, n′

1, n
′
2,m = 0〉 state along the electric

field. It is taken with respect to the center-of-mass of the
µZ atom. We have:

Dj(µZ) = −3n′(n′
1 − n′

2)
2Z

(
1 +

Z

MZ

)
. (110)

The addition ∆Dj is:

∆Dj =
3
2
n′(n′

1−n′
2)mµH

(
m−1

µHm
−1
µZ − 1

)
− αj

m2
µH

. (111)

The dipole moment Dj is seen to differ from the correct
atomic value (110). Unlike the dissociation limit, the spu-
rious addition ∆Dj proves to be very significant for the
states (101). In these states the muon is mainly localized
between the µZ atom and the H nucleus. Accordingly,
the atomic dipole moment Dj(µZ) is positive, and the

Table 2. The matrix elements U
(s)
ji (R) (the upper values) and

Wji(R) (the lower ones) evaluated for the states (101) in the
limit R → ∞. The values of the quantum number n′

2 given in
the left column and the upper row specify the states j and i
respectively. The matrix elements are in muon-atom units.

n′
2 5 6 7

5 −0.912 −0.130 +0.0870

0.0 −0.0592 +0.0376

6 −0.130 −0.551 −0.0984

+0.0592 0.0 −0.0514

7 +0.0870 −0.0984 −0.316

−0.0376 +0.0514 0.0

last term in (103) is an attraction proportional to R−2
t .

The addition ∆Dj cancels the contribution of the atomic
dipole moment in a high degree (Tab. 1). As a result, the
attraction becomes appreciably weaker.

The presented consideration of the asymptotic expan-
sion of the potential Uj(R) was limited to the terms up to
R−2 inclusive. Actually, we took into account still more
terms of higher orders in R−1. The potential was eval-
uated numerically at large R in the way mentioned in
connection with the result (88). The values obtained were
approximated by a finite sum of powers of R−1. The coef-
ficients of the lowest powers treated above were taken to
be equal to their exact values, the others were fitted with
the least squares method.

Let us now discuss the nondiagonal matrix elements
coupling different right-center states in the set (65). Again
we confine ourselves to bound states with m = 0 so
that the matrix elements of the Coriolis interaction are
not considered. Applying the same method as before we
find that as R is increased, the matrix elements U (3)

ji (R)

and U
(a)
ji (R) fall proportionally to R−2 while Wji(R),

U
(1)
ji (R) and U

(s)
ji (R) tend to constant values (Tab. 2)6.

For this reason the corresponding equations in the set (65)
remain coupled in the limit R → ∞, and, therefore,

6 Terms of higher powers of R−1 in the asymptotic expansion
of the nondiagonal matrix elements are constructed in the way
similar to that used for the potentials.
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do not describe the muon transfer to any individual states
of the µZ atom. Nevertheless, as the muon in a bound
right-center state is asymptotically localized near the nu-
cleus Z, a group of such states taken into account in the
expansion (64) of the three-body wavefunction somehow
describes the migration of the muon from one nucleus to
another. In our approach this migration has to be treated
as the muon transfer. It is obvious that only the total
transfer cross-section may be obtained in this way.

Concerning the nondiagonal matrix elements coupling
bound states of different centres, they fall exponentially
as R is increased. This is due to the decrease of the over-
lap of the corresponding two-centre wavefunctions. As a
result, the equations describing the entrance and trans-
fer channels are separated at infinite R. Here we use
the simplest approximation in which the only left-center
state (76) is taken into account. In this case the entrance
channel is asymptotically described by the ordinary radial
Schrödinger equation with the potential (89):

d2χJ
0

dR2
+
[
κ2 − J(J + 1)

R2
− 2Mr U0(R)

]
χJ

0 = 0. (112)

χJ
0 is the corresponding radial function. Its superscript P

is omitted because the parity is now specified by J : P =
(−1)J . The asymptotic momentum of the relative motion
in the entrance channel is:

κ =
√

2Mr Ec. (113)

Below we neglect the small difference (91) of the polariz-
abilities β and β0, and consider U0(R) to coincide with the
exact polarization potential (19). Subsequent modifica-
tions of this potential are related to the electron screening.

2.5 Boundary conditions

As we provided the correct asymptotic description of the
entrance channel, the boundary condition for the func-
tion χJ

0 at large R is easily formulated:

χJ
0 (R → ∞) → sin(κR− Jπ/2) +QJ

0 exp i(κR− Jπ/2).
(114)

The complex amplitude QJ
0 depends on J and κ. The sit-

uation in the transfer channel is more complicated. We
require that the functions χJ

j related to this channel in-
volve only outgoing scattered waves at large R. Let us dis-
cuss how the corresponding solutions are constructed. Let
a block of Nt coupled equations of the form (65) asymp-
totically describe the transfer channel. Only bound right-
center states with m = 0 are considered as before. A
solution required is sought in the form:

χJ
j (R) = fj(R) exp(iφ(R)). (115)

fj and φ are complex functions, φ is the same for all j.
For brevity we do not mark these functions with J . The
substitution of (115) into the set (65) yields a new set of
Nt differential equations for fj and φ. The latter is not

involved into this set. Only φ′ and φ′′ appear there. The
prime denotes the differentiation with respect to R. Then
each of the matrix elements in the set (65) is approximated
by a finite sum of powers of R−1 (Sect. 2.4.2). fj and φ′
are expanded in an asymptotic series in R−1:

fj(R) = f
(0)
j +

f
(1)
j

R
+
f

(2)
j

R2
+ · · · ,

φ′(R) = φ(0) +
φ(1)

R
+
φ(2)

R2
+ · · · (116)

The function φ is obtained by the integration of φ′ over R:

φ(R) = Cφ + φ(0)R+ φ(1) lnR− φ(2)

R
− · · · (117)

Cφ is an arbitrary constant. For example, it may be set
equal to (−Jπ/2). Substituting the expansions (116) into
the equations for fj and φ and setting the coefficients of
the powers of R−1 to zero yield an infinite sequence of
algebraic equations for the quantities f (γ)

j and φ(γ) (γ =
0, 1, ...). In the lowest order we have:

Af (0) = 0. (118)

f (0) is the column of the Nt coefficients f (0)
j , A is a Nt

by Nt Hermitian matrix. Setting its determinant to zero
yields an algebraic equation of degree Nt in the unknown
x = (φ(0))2. The coefficients of this equation are real. In
general, some of its roots may be negative. Let xn be such
a root. The corresponding values of φ(0) are purely imag-
inary: φ(0) = ±i√|xn|. It is obvious that the upper sign
should be chosen. In this case the functions (115) fall ex-
ponentially with increasing R. The transfer channel is ac-
tually open provided there is at least one positive root xp.
The value φ(0) = +√

xp corresponds to an outgoing wave.
After the Nt values of φ(0) have been found, the column
f (0) is constructed for each of them in the standard way.

The next step is to determine the quantity φ(1) and
the column f (1) of the coefficients f (1)

j . The corresponding
matrix equation is:

Af (1) = B(0). (119)

The column B(0) involves φ(0) and f (0) found already.
Moreover, B(0) is linear in φ(1). As detA = 0, the set (119)
seems to have no solutions. However, this is wrong. Let
∆j be the determinant obtained from detA by the sub-
stitution of the column B(0) for the column correspond-
ing to f (1)

j . The standard transformation used in proving
Cramer’s theorem yields an equivalent set ofNt equations:

detA f
(1)
j = ∆j . (120)

It is not hard to check that ∆j = f
(0)
j S, where the real and

linear in φ(1) factor S is independent on j. So, the choice
of φ(1) from the condition S = 0 allows one to set all
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the determinants ∆j equal to zero. As a result, the equa-
tions (120) are transformed into the identity 0 = 0 satis-
fied at any f (1)

j which remain still undefined. It should be
emphasized that the significant fact of the independence
of S on j is due to the asymptotic expansion (100) of the
nonadiabatic potential U (1)

j (R) involving no term propor-
tional to R−1. This leads to the R−1 term in the potential
Uj(R) (103) being the same for all j.

At γ ≥ 2 the column f (γ) of the coefficients f (γ)
j obeys

the matrix equation:

Af (γ) = B(γ−1). (121)

The column B(γ−1) involves the elements of f (ν) with ν ≤
γ−1. As detA = 0, this equation has a solution provided

B(γ−1) = 0. (122)

This condition is rewritten in the form of a set of Nt linear
inhomogeneous equations in Nt unknowns f (γ−1)

j :

A(γ−1) f (γ−1) = C(γ−2), (γ ≥ 2). (123)

The matrix A(γ−1) is invertible so that this set has the
unique solution. The right side C(γ−2) involves the ele-
ments of the columns f (0), ...f (γ−2) as well as the quanti-
ties φ(0), ...φ(γ). Actually, these quantities may be chosen
arbitrarily with the exception of φ(0) and φ(1) which have
been determined. The simplest choice is:

φ(γ) = 0, (γ ≥ 2). (124)

In this case the function φ(R) involves only the main
contributions proportional to R and lnR. Another choice
of φ(γ) means a redefinition of the coefficients f (γ)

j . In-
deed, the substitution of the expansion (117) into (115)
yields factors exp (−φ(γ)/(γ − 1)Rγ−1) which may be ex-
panded in powers of R−1 and, thereby, included in the
asymptotic expansion of the function fj(R). Finally, the
set (123) written for γ = 2 allows one to find f (1). Then
γ is increased by unity, the column C(1) is constructed,
f (2) is found, etc. In this way we obtain the Nt solutions
required. Each of them involves the Nt functions of the
form (115). At large R these functions either fall expo-
nentially or present an outgoing wave. For example, if the
three states (101) are used to describe the transfer chan-
nel in the reaction (3), all the three roots φ(0) prove to be
real, and we have the three outgoing waves. The boundary
conditions at R = 0 are standard:

χJ
j (R = 0) = 0. (125)

2.6 Cross-sections

The asymptotic radial function (114) may be rewritten as
follows:

χJ
0 (R → ∞) → i

2

[
exp

(
−κR+

Jπ

2

)

−SJ
0 exp

(
κR− Jπ

2

)]
. (126)

SJ
0 is the diagonal S-matrix element corresponding to the

entrance channel:

SJ
0 = 1 + 2i QJ

0 . (127)

It may be expressed in terms of a complex phase shift ωJ :

SJ
0 = exp(2iωJ); ωJ = υJ + iρJ . (128)

As the transfer channel is open, the modulus of SJ
0 is

less than unity, and the imaginary part ρJ of the complex
phase shift is positive. The real part υJ may be defined as
follows:

υJ = δJ + πNJ , (129)

where |δJ | ≤ π/2, and the integer NJ is:

NJ = lim
R→∞

[
NJ

0 (R) −NJ
B(R)

]
. (130)

NJ
0 (R) and NJ

B(R) are the numbers of zeros of, respec-
tively, the function χJ

0 (R) and the spherical Bessel func-
tion jJ (κR) at the segment [0, R]. In the limit R → ∞
both these numbers become infinite, but its difference NJ

remains finite. Actually, the product πNJ does not change
SJ

0 as well as the cross-sections, but its addition is useful
because it indicates how strongly the interaction distorts
the wave function in the entrance channel.

In our approach the muon transfer cross-section σt(1S)
coincides with the total reaction cross-section. It is a sum
of partial transfer cross-sections [29]:

σt(1S) =
∞∑

J=0

σ
(J)
t ; σ

(J)
t =

π

κ2
(2J + 1)PJ . (131)

PJ is the transfer probability at given Ec and J :

PJ = 1 − |SJ
0 |

2
= 1 − exp(−4ρJ). (132)

The differential cross-section of the elastic scattering of
µH(1S) by the Z atom is:

dσel

dΩ
= |fel(ϑ)|2. (133)

dΩ = 2π sinϑdϑ; ϑ is the scattering angle in the center-
of-mass frame, fel(ϑ) is the scattering amplitude:

fel(ϑ) =
∞∑

J=0

f
(J)
el (ϑ);

f
(J)
el (ϑ) =

i

2κ
(2J + 1)(1 − SJ

0 )PJ (cosϑ). (134)

PJ(cosϑ) is the Legendre polynomial. The total elastic
cross-section is:

σel =
∞∑

J=0

σ
(J)
el ;

σ
(J)
el =

2π
κ2

(2J + 1)(cosh 2ρJ − cos 2δJ) exp(−2ρJ).

(135)
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Let us also consider some quantities specifying energy
losses of muonic hydrogen in individual elastic collisions
with Z atoms. These may be of interest in treating the
moderation of muonic hydrogen in a gas mixture. Let Elab

and Elab(1− ε) be the energies of µH(1S) before and after
an elastic collision. They are specified in the laboratory
frame where the Z atoms are assumed to be initially in
rest. The relative energy loss ε is:

ε = εmw(ϑ). (136)

εm is the maximum value of ε:

εm = 4Mr(1 +MH +MZ)−1. (137)

For the scattering of muonic protium by neon εm ≈ 0.20.
The function w(ϑ) is:

w(ϑ) = (1 − cosϑ)/2. (138)

The mean energy loss in an elastic collision is:

〈ε〉 = εm〈w〉, (139)

where 〈w〉 is:

〈w〉 =
1
σel

∫
dΩ

dσel

dΩ
w(ϑ) =

σd

2σel
. (140)

σd is the diffusion cross-section:

σd =
∫
dΩ

dσel

dΩ
(1 − cosϑ). (141)

The spread of energy losses is specified by the mean square
deflection of ε from 〈ε〉:

∆ε =
[〈(ε− 〈ε〉)2〉]1/2

= εm∆w, (142)

where ∆w is:

∆w =
(〈w2〉 − 〈w〉2)1/2

. (143)

〈w2〉 is defined similarly to (140). It is:

〈w2〉 =
2σd − σv

4σel
. (144)

The cross-section σv is:

σv =
∫
dΩ

dσel

dΩ
sin2 ϑ. (145)

Such a cross-section appears in treating the viscosity of
gases. σd and σv may be also expressed as an infinite series
in terms of ρJ and δJ .

2.7 The integration of coupled equations

Here we discuss the problem of constructing the solution
of the set (65) which satisfies the boundary conditions at

R = 0 and R → ∞. Let the set involve N coupled equa-
tions. The standard way implies, in particular, that N
linearly independent solutions vanishing at R = 0 are gen-
erated by a numerical integration of the equations starting
from the origin [32]. These solutions differ in initial slopes
of the radial functions at R = 0. As the equations involve
both the first and the second derivatives of these functions,
the integration may be carried out with a Runge-Kutta
method. However, this procedure was found to be inap-
plicable in practice. It leads to solutions which are almost
linear dependent. This is due to a complicated structure of
the potentials Uj(R). Their nonadiabatic parts U (1)

j (R) in-
volve the derivatives of the two-center wavefunctions with
respect to R and, therefore, vary abruptly in the quasi-
crossing regions. As a result, barriers appear in the po-
tentials. The radial function satisfying the equation with
such a potential increases rapidly with R in the subbarrier
region. As all the equations are coupled, this increase is
transferred to the other functions. Finally, the difference
of the initial slopes becomes insignificant, and all the N
solutions are obtained to be similar to one another. In this
situation it is convenient to take advantage of the multi-
channel log-derivative method [33]. Let Mχ(R) be a N
by N matrix, each column of which is a linearly indepen-
dent real solution vanishing at R = 0. The upper element
of a column is a function χJ

0 (R) satisfying the equation
asymptotically describing the entrance channel. Confin-
ing ourselves to bound two-center states with m = 0 we
rewrite the set (65) in the matrix form:

M′′
χ(R)+w(R)M′

χ(R)+
[
u(s)(R) + u(a)(R)

]
Mχ(R) = 0.

(146)
The prime denotes the differentiation with respect to R.
The elements of the antisymmetric matrices w(R) and
u(a)(R) are related to the matrix elements involved into
the set (65) as follows:

[w(R)]ji = −2Mr Wji(R);
[
u(a)(R)

]
ji

= [w(R)]′ji /2.

(147)
The subscript m is omitted. The nondiagonal elements of
the symmetric matrix u(s)(R) are:[

u(s)(R)
]

ji
= −2Mr U

(s)
ji (R), (j 
= i). (148)

Its diagonal elements are:

[u(s)(R)]jj = 2Mr

[
Ec − Uj(R)

]
− J(J + 1)

R2
. (149)

The matrix Mχ(R) is invertible everywhere except the
origin. This allows one to introduce the so-called log-
derivative matrix:

Y(R) = M′
χ(R)M−1

χ (R). (150)

The differential equation for Y(R) follows from (146). It is:

Y′(R) + w(R)Y(R) + Y2(R) + u(s)(R) + u(a)(R) = 0.
(151)
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Due to the relation (147) of w′(R) to u(a)(R) the latter
may be excluded from this equation. With this purpose
let us introduce the matrix X(R):

X(R) = Y(R) +
1
2
w(R). (152)

The equation (151) takes the form:

X′(R) +
1
2

[
w(R)X(R) − X(R)w(R)

]
+ X2(R)

+ u(s)(R) − 1
4
w2(R) = 0. (153)

At the origin Mχ(0) = 0 while M′
χ(0) may be chosen to

coincide with the unit matrix. As a result, Y(0) as well
as X(0) are diagonal matrices with infinite diagonal el-
ements. The equation (153) guarantees that in this case
X(R) is a symmetric matrix everywhere. This equation
can be integrated in a way similar to that used in [33].
The integration is terminated in a point R0 lying in the re-
gion where the nondiagonal matrix elements coupling the
entrance and transfer channels are negligible. The matrix
Y(R0) is thus known. The solutions from which the ma-
trix Mχ(R) is constructed vanish at R = 0, but, generally
speaking, they do not obey the boundary conditions at
R → ∞. To satisfy them a linear combination of these so-
lutions is taken. The column of the radial functions related
to this combination is written as Mχ(R)C where C is the
column of coefficients which are determined by joining in
the point R0 with solutions having the correct asymptotic
behaviour. Let us discuss how this join is made. AtR > R0

the entrance channel is described by the equation (112).
It has two real solutions specified by their behaviour at
large R:

χ
(s)
0 (R → ∞) → sin(κR − Jπ/2);

χ
(c)
0 (R → ∞) → cos(κR− Jπ/2). (154)

These solutions are first evaluated in a point R1 in which
the collision energy Ec is much greater than the poten-
tial. If the unscreened polarization potential (19) is used,
the method described in [32] may be applied. Other-
wise the Riccati-Bessel functions may be taken. As a rule
R1 > R0, and an additional numerical integration of the
equation (112) should be made to obtain the solutions
considered in the point R0. The (N − 1) equations de-
scribing the transfer channel at R > R0 remain coupled
at R → ∞. Their solutions in the form of outgoing waves
are constructed in a point R2 in the way discussed in Sec-
tion 2.5. As R2 is usually greater than R0, these solutions
are continued to R0 by a numerical integration. The con-
ditions of joining are:{

Mχ(R0)C = Sχ(R0) + Eχ(R0)Q,

M′
χ(R0)C = S′

χ(R0) + E′
χ(R0)Q.

(155)

The upper element of the column Sχ(R) is the func-
tion χ

(s)
0 (R), the other elements are equal to zero. Each

column of theN byN matrix Eχ(R) is one of the solutions
constructed in the form of outgoing waves. In the first col-
umn only the upper element does not vanish. It is equal
to the sum χ

(c)
0 (R)+ iχ

(s)
0 (R) which tends asymptotically

to exp i(κR − Jπ/2) involved into the boundary condi-
tion (114) for the function χJ

0 (R). Each of the remaining
(N − 1) columns is a solution associated asymptotically
with an outgoing wave in the transfer channel. The upper
element of such a column is equal to zero. Q is the column
of unknown complex amplitudes of the outgoing waves. Its
upper element is equal to QJ

0 involved into (114). The col-
umn C of unknown complex coefficients is easily excluded
from the equations (155). As a result, the matrix equation
for Q is obtained:[
Y(R0)Eχ(R0) − E′

χ(R0)
]
Q = S′

χ(R0) − Y(R0)Sχ(R0).
(156)

Actually, this is a set ofN linear inhomogeneous equations
for the N complex elements of the column Q. Solving this
set we find the amplitude QJ

0 which allows one to evaluate
the cross-sections considered in Section 2.6.

3 The muon transfer from protium to neon

3.1 The two-center problem

The first step in a realization of the present method is
to choose a finite set of eigenstates of the two-center
problem (36) in which the three-body wavefunction is ex-
panded. The charge Z ′ is now given by (31). We follow
the standard view that the muon transfer is mainly due to
long-distance quasicrossings of adiabatic terms associated
with the entrance and transfer channels. It is known [27]
that quasicrossings exist for terms with the same quan-
tum numbers m and n1. For the state (76) asymptotically
describing the entrance channel these quantum numbers
are equal to zero. Accordingly, we consider right-center
states with m = n′

1 = 0. Their wavefunctions ψj(ξ, η;R)
have no nodes in the variable ξ. The subscript j is now the
parabolic quantum number n′

2. In solving the two-center
problem we used the comparison equation method sug-
gested in [34]7. The eigenvalues εj(R) obtained in this way
for the states with n′

2 = 5–9 are shown in Figure 2. The
quasicrossings at Rc ≈ 8, 13, 21 and 37 m.a.u. are clearly
seen. The terms involved into a quasicrossing differ in n′

2

by unity. For the states considered the number nη of nodes
of ψj in the variable η coincides with n′

2 so that the values
of nη differ by unity also in accordance with the general
rule [27]. There are two more long-distance quasicrossings
not shown in Figure 2. The first occurs at Rc ≈ 85 m.a.u.
and involves the right-center states with n′

2 = 9 and 10.
The second is at Rc ≈ 878 m.a.u. It involves the right-
center state with n′

2 = 10 and the left-center state (76).
Let us impress that muonic protium in the 1S state and

a neon nucleus approach adiabatically from infinity. Until
the distance R reaches the outermost quasicrossing point,

7 Some misprints were found in [34] so the relevant results
were rederived.



28 The European Physical Journal D

Fig. 2. The eigenvalues εj(R) of the two-center problem vs. the interatomic distance R for the right-center states with the
parabolic quantum numbers m = n′

1 = 0 and n′
2 = 5–9 (solid curves). εj(R) and R are given in muon-atom units. Any solid

curve is marked with a value of n′
2. A vertical arrow indicates the value of R at which the corresponding state crosses the

top of the potential barrier separating the Coulomb centers. The dashed curve represents the asymptotic expansion (80) of the
eigenvalue ε0(R).

the system is described by the wavefunction ψ0(ξ, η;R)
correlated to the 1S state at R → ∞ (see (78)). At any
finite R this function has eleven zeros, but all of them are
located near the center Z ′ where the function is exponen-
tially small. ψ0 is mainly localized near the proton where
it is the atomic 1S-state wavefunction slightly distorted
by the Coulomb field of the charge Z ′. The correspond-
ing eigenvalue ε0(R) is given by the asymptotic expan-
sion (80). In a very narrow vicinity of the outermost
quasicrossing point Rc ≈ 878 m.a.u. the muon charge dis-
tribution in this state changes abruptly. The charge mi-
grates through the potential barrier separating the two
Coulomb centers to the right center Z ′, and ψ0 becomes
exponentially small near the proton. The second state
involved into the quasicrossing suffers a similar trans-
formation. On the right of the quasicrossing region its
wavefunction ψj is localized near the center Z ′ where it
coincides practically with the wavefunction of the corre-
sponding atomic state. On the left ψj becomes localized
near the proton where it is very close to ψ0 obtained with
the asymptotic expansion in powers of R−1 [30,31]. So,
after the quasicrossing region has been passed, the right-
center state with n′

2 = 10 actually describes muonic pro-
tium in the Coulomb field of neon. The same phenomenon
occurs near the other long-distance quasicrossings. For ex-
ample, at R < 85 m.a.u. the state with n′

2 = 10 becomes
localized near the center Z ′ again while the right-center
state with n′

2 = 9 describes muonic protium and neon. At
R < 37 m.a.u. the state with n′

2 = 8 plays this role, etc.
Thus, the right-center states with the successively decreas-
ing values of the quantum number n′

2 describe muonic

protium in the field of neon at R lying between the qua-
sicrossing points. This statement is confirmed by a good
agreement of results obtained for these states within the
comparison equation method [34] with those found with
the asymptotic expansion of ε0 and ψ0 in powers of R−1.
These results are the eigenvalues εj shown in Figure 2 as
well as matrix elements involved into the set (65) of cou-
pled equations. Of course, the above statement is wrong in
a quasicrossing region where both the states involved are
not localized at any center. It should be emphasized that
the comparison equation method takes this case into ac-
count. As Rc is decreased, the quasicrossings occur closer
and closer to the top of the potential barrier separating
the Coulomb centers, and the quasicrossing regions be-
come broader (Fig. 2). The quasicrossing at Rc ≈ 8 m.a.u.
occurs almost at the barrier top.

Rigorously speaking, the state (76) describes the en-
trance channel only on the right of the outermost qua-
sicrossing point Rc ≈ 878 m.a.u., and all the two-center
states considered above should be included into the ex-
pansion (64) of the three-body wavefunction. However,
the standard view on the muon transfer assumes that only
quasicrossings occurring near the barrier top and, thereby,
at not too large R are significant. For example, according
to [18] the muon transfer from hydrogen to carbon and
oxygen is due to quasicrossings at Rc = 7–9 m.a.u. A
quasicrossing at Rc ≈ 12 m.a.u. was found to be respon-
sible for the muon transfer to fluorine [35]. The already
mentioned results [21] on the muon transfer to neon were
obtained in treating quasicrossings at Rc = 26–28 m.a.u.
In this connection we fully ignore the deep subbarrier
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quasicrossings occurring at Rc ≈ 37, 85 and 878 m.a.u.
So, only the two-center states with n′

2 = 5–8 are taken
into account in the set (65) of coupled equations. As it
was explained, on the right of the quasicrossing point
Rc ≈ 21 m.a.u. the state with n′

2 = 8 describes muonic
protium in the Coulomb field of neon. In this case the
muon is mainly localized in a vicinity of the proton
where its wavefunction ψj coincides well with ψ0. Ac-
cordingly, the potential Uj(R) tends to the polarization
attraction (89) with increasing R, and the nondiagonal
matrix elements coupling this state with the others fall ex-
ponentially. In this sense the state considered is associated
with the entrance channel. Actually, this picture becomes
wrong near the next quasicrossing point Rc ≈ 37 m.a.u.,
but we ignore this effect in accordance with the accepted
assumption that the deep subbarrier quasicrossings are
insignificant. Thus, on the left of the quasicrossing point
Rc ≈ 21 m.a.u. we have four coupled equations in the
set (65). As R increases to the right of this point, the equa-
tion for the radial function χJ

j corresponding to the state
with n′

2 = 8 is gradually separated from the others and
takes the form (112) in which χJ

j is substituted for χJ
0 .

We assume that this equation asymptotically describes
the entrance channel. The transfer channel is described
by the three coupled equations for the radial functions
corresponding to the states with n′

2 = 5, 6 and 7.
The subsequent procedure is straightforward. The ma-

trix elements appeared in the coupled equations are eval-
uated with the formulae of Section 2.3. Here we used the
comparison equation method [34] to construct the rele-
vant two-center wavefunctions. At large R the asymp-
totic expansions of the matrix elements discussed in
Section 2.4.2 were applied. The set of the four coupled
equations was integrated in the way indicated in Sec-
tion 2.7. The point R0 in which the equations associated
with the entrance and transfer channels are separated and
in which the join (155, 156) is made was taken in the in-
terval 30–35 m.a.u.

3.2 The electron screening

The general treatment presented in Section 2 related to
the case in which muonic hydrogen collides with a bare
nucleus. Actually, the collision with an atom or molecule
occurs so that the presence of the electron shell should
be taken into consideration. Generally speaking, the dy-
namics of the electron shell during the muon transfer is a
complicated problem. Indeed, the energy liberated in the
muon transfer is of the order of a few keV. It is more than
enough for an electron excitation. Accordingly, a more de-
veloped treatment is needed in this case. Electron terms in
the Coulomb field of the three-body system µHZ should
be constructed, and transitions between them should be
considered. The simplest approximation is to ignore any
excitations and to assume that the electron shell remains
in its ground state during the collision. In this case the role
of the electron shell is mainly reduced to the screening of
the electrostatic interaction of the fragments at large sepa-
rations. This effect is manifested in both the entrance and

transfer channels. For example, in the case of the trans-
fer to neon the incident muonic hydrogen interacts with a
neon atom. The assumption that the electron shell is al-
ways in its ground state means that the electron state in
the transfer channel is similar to the one of the molecule
HF, i.e. the ordinary hydrogen atom in the electron 1S
state and muonic neon with the electron configuration of
fluorine are finally formed. An alternative assumption is
that the bare hydrogen nucleus and muonic neon with the
electron configuration of the negative ion F− appear. In
any case, as the Jacobi coordinates used in our approach
are unnatural for the transfer channel, a way of taking into
account the screening is not obvious and needs an addi-
tional study. Here we do not concern this question and
fully ignore the screening in the transfer channel. This
may be partly justified by the relative motion energy in
the transfer channel being much greater than the collision
energy in the entrance one. For this reason the electron
screening in the entrance channel seems to be more signif-
icant. It can be easily taken into consideration within our
approach. Indeed, on the right of the quasicrossing occur-
ring at Rc ≈ 21 m.a.u. the nondiagonal matrix elements
coupling the entrance and transfer channels fall rapidly,
and the polarization attraction U0(R) (89) appears in the
equation asymptotically describing the entrance channel.
As it was mentioned at the end of Section 2.4.2 we ne-
glect a percent difference of the polarizabilities β and β0

and use the exact polarization potential Up(R) (19) in-
stead of U0(R). The effect of the electron screening is
taken into account by a proper modification of this po-
tential. In this point we followed the method suggested
in [36]. The case of neon is favourable because its elec-
tron shell is closed. For its description we used analytical
one-electron wavefunctions obtained within the Roothan-
Hartree-Fock method [37]. The new potential Ue(R) sub-
stituted for Up(R) may be split into three terms:

Ue(R) = Us(R) + Uf(R) + Uw(R). (157)

Us(R) is the screened polarization interaction of muonic
hydrogen with neon:

Us(R) = −βZ
2
a(R)

2R4
; Za(R) = Z − Ze(R). (158)

Ze(R) is the absolute value of the electron charge inside
the sphere of the radius R centered at the neon nucleus.
Za(R) is the total atomic charge in this sphere. If there
are no electrons, Ze(R) ≡ 0 and Us(R) coincides with the
unscreened polarization potential Up(R).

The term Uf (R) is due to the finite size of muonic
hydrogen:

Uf(R) =
2π
3

〈r2µH〉ρe(R). (159)

〈r2µH〉 is the mean-square charge radius of muonic hydro-
gen in the 1S state. It is taken with respect to the center-
of-mass of µH. A trivial calculation yields:

〈r2µH〉 = − 3
mµH

(
1 − 1

MH

)
. (160)
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The minus sign is due to the predominating contribution
of the negative muon. In the formula (159) the quan-
tity ρe(R) is the electron density at the distance R from
the neon nucleus. It is normalized as follows:

4π

∞∫
0

ρe(R)R2dR = Z. (161)

One should note that an interaction similar to Uf (R)
causes the well-known shift of one-electron S-levels in the
field of a finite-size nucleus. In this case the electron den-
sity at the nucleus is taken, and the nuclear mean-square
charge radius is substituted for 〈r2µH〉.

Both the potentials Us(R) and Uf (R) are attractive
and fall exponentially with increasingR. The latter results
from an exponential decrease of the charge Za(R) and the
electron density ρe(R). However, as Us(R) is proportional
to the second power of Za(R) and, in addition, to R−4,
it falls more rapidly. Actually, Us(R) is significant at dis-
tancesR less than the electron Bohr radius (≈ 200 m.a.u.).
For example, at R = 30 m.a.u. Us ≈ −1.7 eV, and it
exceeds Uf by a factor of twelve. As the electron K-
shell of neon has a similar size, the screening effect in
Us is already appreciable. The charge Za is about 8.9. At
R ≈ 100 m.a.u. the potentials Us and Uf become equal.
Their sum is about −0.02 eV, i.e. it is of the order of ther-
mal energies. At R = 200 m.a.u. Us is only five percent
of Uf . The latter is about −0.002 eV.

The third term Uw(R) in the formula (157) is the po-
tential providing the long-range van der Waals attraction
at large R. It appears in the second order of the pertur-
bation theory with respect to the Coulomb interaction of
atomic electrons with muonic hydrogen. A calculation of
this potential is a complicated problem because it involves
a summation over intermediate states of both the electron
shell and muonic hydrogen. We confined ourselves to a
simple estimation of Uw(R) at large R. In this case the
potential may be written in the form of an asymptotic
expansion in even powers of R−1:

Uw(R) = −C6

R6
− C8

R8
− C10

R10
− · · · (162)

The leading term proportional to R−6 is the van der Waals
attraction caused by the interaction of induced dipole mo-
ments of neon and muonic hydrogen. The constants of the
expansion were evaluated in the completeness approxima-
tion. It is based on the assumption that the electron L-
shell of neon is mainly deformed in the field of muonic
hydrogen while the deformation of the K-shell is less sig-
nificant. As typical excitation energies of L-electrons are
much less than the ones of muonic hydrogen, the sum over
intermediate electron states involved into Uw(R) is sepa-
rated and finally expressed in terms of mean values with
respect to the ground state of the electron shell. The con-
stant C6 obtained in this way is equal to 1.90×10+6 m.a.u.

In order to elucidate how the electron screening in the
entrance channel influences the cross-sections we carried

out calculations for the three cases:

(A) the electron screening is fully ignored. The un-
screened polarization potential Up(R) is used in the
equation (112);

(B) only the screened polarization potential Us(R) is sub-
stituted for Up(R). The terms Uf (R) and Uw(R)
are not taken into account. Such a way was applied
in [15,16];

(C) this is the most realistic case in which the potential
Ue(R) is taken to be equal to the sum Us(R)+Uf(R)
on the left of the point Rw where this sum becomes
equal to the van der Waals potential (−C6/R

6). At
R > Rw the latter is used as Ue(R). This is the sim-
plest way to provide the correct asymptotic behaviour
of the potential. Actually, Rw ≈ 1070 m.a.u. (about
2.7 Å), and the potential in this point is very small —
about 7× 10−9 eV. So, in our approximation the van
der Waals attraction is significant only at extremely
low collision energies. We are interested in energies
Ec ≥ 10−4 eV. In this case the van der Waals attrac-
tion is manifested in those partial waves for which
the outermost classical turning point in the radial
equation (112) with the potential Ue(R) lies far on
the right of Rw. In particular, it provides the cor-
rect dependence of the corresponding phase shifts on
Ec and J (Sect. 3.3.2). However, as these phase shifts
are small, their contributions to the cross-sections are
negligible. So, the main difference of the present case
from the case B consists in taking into account the
potential Uf (R).

In conclusion, it should be emphasized that our treatment
of the electron screening is valid provided the collision
energyEc is less than the lowest electron excitation energy
of neon. The latter is about 16.6 eV [38]. For this reason
we somewhat arbitrarily placed the upper limit of 15 eV
on Ec.

3.3 Results

3.3.1 The muon transfer

The reduced transfer rate qt(1S) defined in (9) may be
written in the form of a partial wave expansion:

qt(1S) =
∞∑

J=0

q
(J)
t . (163)

The partial transfer rates q(J)
t are expressed in terms of

the partial transfer cross-sections (131):

q
(J)
t = NH v σ

(J)
t . (164)

Plots of some partial transfer rates vs. the collision en-
ergy Ec are shown in Figure 3. Let us note main features
of the curves presented.

At low energies the contribution of the S-wave pre-
dominates. The corresponding transfer rate q(0)t tends to
a constant value in the limit Ec → 0. This value depends
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Fig. 3. Some partial transfer rates q
(J)
t reduced to the atomic

density of liquid hydrogen vs. the collision energy Ec. The
three windows correspond to the cases A, B and C. The solid,
dash-dot, dashed and dotted curves represent the rates at
J = 0, 1, 2 and 3 respectively. A vertical arrow indicates the
value of Ec at which the state with the given J crosses the top
of the hump in the effective potential.

substantially on the way of taking into account the elec-
tron screening. It is maximum in the case A in which
the screening is fully ignored and the long-range polar-
ization attraction acts in the entrance channel. The elec-
tron screening makes this attraction weaker. As a result,
in the case B the zero-energy value of q(0)t falls by a factor
of 6.5. The addition of the attraction (159) in the case C
increases it by a factor of 3.5.

At low energies q(0)t is nearly energy independent. This
means that the imaginary part ρ0 of the complex phase
shift (128) is linear in v, and the inverse v law is valid
for the transfer cross-section in accordance with (11).
However, deviations from this law become appreciable
at rather small energies. For example, in the case A the
value of q(0)t at Ec = 2 × 10−3 eV is about 70% of that
found at Ec = 10−4 eV. This contradicts the assumption
of [18,21,22] that the S-wave transfer rate remains nearly
constant at thermal energies and even above. It should be
noted that results on the muon transfer from deuterium
to neon obtained in [24] also show that the transfer rate
varies at thermal energies. The weakening of the attrac-

tion in the entrance channel due to the electron screening
makes the energy dependence of q(0)t smoother. This is es-
pecially strongly manifested in the case B in which q

(0)
t

remains nearly constant right up to thermal energies. The
case C is intermediate in this sense.

As the collision energy is increased, the S-wave trans-
fer rate decreases. In the case A the corresponding curve
shown in Figure 3 in the log-log scale has a nearly linear
segment at Ec = (0.02−0.3) eV. In this interval including
thermal energies the rate q(0)t follows the v−1 law with a
few percent accuracy. The transfer cross-sections falls as
E−1

c in accordance with (12). Taking into account the elec-
tron screening diminishes the slope of the linear segment.
The reason is that the screening decreases the low-energy
transfer rate, but it becomes insignificant at Ec > 1 eV.
In this energy region the difference of the rates q(0)t calcu-
lated for the three cases considered does not exceed a few
percent.

Let us come to partial waves with nonzero angular mo-
menta J . The radial Schrödinger equation (112) asymp-
totically describing the entrance channel involves the ef-
fective potential:

Ueff(R) = Ue(R) +
J(J + 1)
2MrR2

. (165)

At a nonzero J this potential has a hump. The position Rh

of its top and its height Uh = Ueff(Rh) are given in Ta-
ble 3. In accordance with [15] the weakening of the at-
traction in the potential Ue(R) caused by the electron
screening makes the hump higher. At J ≤ 4 the hump
top lies on the right of the outermost quasicrossing point
Rc ≈ 21 m.a.u. which specifies a typical radius of the term
interaction region. At low collision energies satisfying the
inequality Ec � Uh the potential hump prevents the pene-
tration of the corresponding partial wave into the interac-
tion region, and the partial transfer rate q(J)

t is negligible.
As Ec goes up to the hump top, q(J)

t increases rapidly
and becomes comparable with the S-wave transfer rate at
Ec ∼ Uh. The lowest value of Uh is realized for the P-
wave. Depending on the electron screening it varies in the
interval 0.052−0.084 eV which joins thermal energies. As
a result, the contribution of the P-wave to the muon trans-
fer is already appreciable at these energies. For example,
at Ec = 0.04 eV (≈ (3/2)kT , k is the Boltzmann constant,
T = 300 K) the ratio of the P- and S-wave transfer rates
is equal to 0.22 for the case A and 0.33 for the cases B
and C. It is interesting that although the hump height in
the case A is least, the P-wave is less significant than in
the other cases. This is due to the potential hump being
wider in this case — the fact also mentioned in [15]. After
the collision energy has become greater than Uh, the P-
wave transfer rate passes through a broad maximum and
begins to decrease at Ec > 1 eV. In this region the elec-
tron screening is already insignificant, and the ratio of the
P- and S-wave transfer rates varies in the interval 2−2.5.

The situation in the D-wave is especially interest-
ing. In the case A the energy dependence of the par-
tial transfer rate is similar to that found for the P-wave.
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Table 3. The position Rh of the top of the effective-potential
hump and its height Uh for some J in the cases A–C. In any
box the upper value is Rh in m.a.u., the lower one is Uh in eV.

J A B C

1 76.1 62.4 65.6

0.0519 0.0841 0.0672

2 44.0 39.0 40.5

0.467 0.641 0.577

3 31.1 28.9 29.5

1.87 2.32 2.17

4 24.1 23.0 23.2

5.19 6.05 5.78

5 19.7 19.1 19.2

11.7 13.0 12.6

The electron screening changes this dependence drasti-
cally. The D-wave transfer rate has a resonance peak at
Ec ≈ 0.46 and 0.31 eV in the cases B and C respectively.
The reason of its appearance is that the screening modifies
the D-wave potential hump in such a way that a quasi-
steady state arises somewhat below the hump top. If the
collision energy is close to the energy of this state, the
D-wave penetrates into the term interaction region, and
the muon transfer becomes very effective. For example, in
the case B the peak value of the transfer probability PJ

defined in (132) is about 0.53. In the case C it is still
greater — about 0.83. As the quasi-steady state lies near
the hump top, its effect is manifested right up to colli-
sion energies of (1−2) eV. At higher energies the electron
screening becomes less significant. It should be also noted
that the screening strongly diminishes the D-wave trans-
fer rate compared to the P-wave one at Ec ≤ 0.1 eV. It
is interesting that a peak similar to that discussed above
was predicted in the paper [39] in which the muon transfer
from protium to oxygen was treated within a semiclassi-
cal approach. Taking into account the electron screening
in this paper corresponded to our case B, but again the
incorrect value of the dipolar polarizability β = 9/2 m.a.u.
was used instead of the correct one (22).

As the collision energy migrates to the region Ec >
1 eV, partial waves with J ≥ 3 become significant. Main
features of the energy dependence of the corresponding
partial transfer rates are similar to those found for the
P-wave: a rapid increase as Ec goes up to the hump top,
a broad maximum above the top and the subsequent fall
characterized, in particular, by a gradual decrease of the
electron screening effect. The number of partial waves
which have to be taken into account in the expansion (163)
increases with the collision energy. At the maximum value
of Ec = 15 eV treated in our calculations the partial waves
with J ≤ 6 are enough to obtain the total transfer rate
qt(1S) with a percent accuracy.

The plot of the total transfer rate qt(1S) vs. the col-
lision energy is shown in Figure 4. The trend of the
curves presented corresponds obviously to the features of
the partial transfer rates discussed above. At low ener-

Fig. 4. The total reduced transfer rate qt(1S) vs. the collision
energy Ec. The dotted, dashed and solid curves represent the
rate for the cases A, B and C respectively. The experimental
values (14) and (4) are attributed to the mean thermal energies
(3/2)kT at T = 20 and 300 K.

gies the S-wave contribution predominates. Accordingly,
at Ec ∼ 10−4 eV the transfer rate is nearly constant. As
the energy is increased, the curves obtained for the cases A
and C go down while in the case B the rate remains nearly
constant. At thermal energies the contribution of the P-
wave becomes significant, and the transfer rate begins to
increase. As a result, in the cases A and C the transfer rate
passes through a minimum lying in the thermal region.
At the subsequent energy increase the D-wave becomes
involved, and the peak caused by the quasi-steady state
appears on the curves calculated for the cases B and C. On
the right of this peak the curves pass through one more
minimum and at Ec > 5 eV begin to go up due to the
contribution of waves with J ≥ 3. The electron screening
is not too significant in this region, and all the curves are
close to one another.

The comparison of the rates presented with the ex-
perimental values (14) and (4) attributed in Figure 4 to
the mean thermal energies (3/2)kT at T = 20 and 300 K
shows that the most reasonable agreement is observed in
the case C in which the electron screening is taken into
account most accurately. Indeed, the transfer rate ob-
tained in this case for the liquid hydrogen temperature
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lies within the experimental errors while the rates found
in the cases A and B are respectively too large or too
low. Concerning room temperatures, the rate calculated
in the case C exceeds the experimental value by a fac-
tor of two. However, it seems to be very important that
the transfer rate has the well pronounced minimum at
thermal energies. This result explains (at least qualita-
tively) why the muon transfer is strongly suppressed at
room temperatures. Moreover, the calculation made in the
case C correctly reproduces the tendency of decreasing
the transfer rate with increasing the temperature in the
interval 20−300 K. It is interesting that this tendency is
not reproduced in the case B in which the transfer rate
is nearly constant right up to thermal energies. For this
reason the results obtained in this case seem to be less
realistic although in the thermal region the transfer rate
is closer to the experimental value. The rates calculated
in the case A are too large everywhere. In order to make
these conclusions more obvious we averaged the transfer
rate qt(1S) over the Maxwellian distribution and obtained
the rate λt(1S) of the muon transfer from thermalized µp
atoms. This quantity is a function of the temperature T
and can be directly compared with the experimental val-
ues. The corresponding plots are shown in Figure 5. It is
seen that as the temperature migrates from the liquid hy-
drogen value T = 20 K to the thermal region, λt(1S) cal-
culated in the case C falls and passes through a minimum
just at T ≈ 300 K. In this point λt(1S) ≈ 2×1010 s−1, i.e.
it exceeds the experimental value (4) by a factor of 2.3.
The agreement with the experimental rate (14) measured
at T = 20 K is formally good, but the Maxwellian distri-
bution seems to be a too crude model for liquid hydrogen.
Actually, in this case it is better to confine ourselves to
the conclusion that at the collision energies typical for liq-
uid hydrogen the transfer rate qt(1S) is comparable with
the experimental value. Of course, in this point we ig-
nore any effects of the surrounding medium on the bi-
nary transfer reaction (8). In particular, the distortion of
the incoming wave caused by scattering on H2 molecules
is neglected (Sect. 1.3.1). Moreover, we assume that the
electron screening effects discussed above are not changed
significantly in liquid hydrogen. This assumption seems
to be reasonable because a typical screening radius Rs

is appreciably less than the mean distance dH2 between
H2 molecules in the liquid. Rs is defined by the condition
|Ue(Rs)| = (3/2)kT . At T = 20 K it is equal to 0.32 and
0.49 Å for the cases B and C respectively. The distance
dH2 is of the order of (NH/2)−1/3 ≈ 3.6 Å. So, the ratio
Rs/dH2 is about 0.1.

Coming back to Figure 5 it is also interesting to note
that in the case C the rate λt(1S) increases rapidly at
T > 500 K. This is a manifestation of the resonance peak
in qt(1S) caused by the quasi-steady state in the D-wave.
In the case B the same increase begins at greater temper-
atures. In the case A the rate λt(1S) remains nearly con-
stant in the interval 500−1000 K. In conclusion, it should
be emphasized that the results presented above clearly
indicate the importance of the correct description of the
electron screening in the entrance channel. In particular,

Fig. 5. The reduced rate λt(1S) of the muon transfer from
thermalized µp atoms vs. the temperature T . The notation of
the curves is identical to that used in Figure 4. The experi-
mental values correspond to T = 20 and 300 K.

taking into account the potential Uf (R) caused by the fi-
nite size of muonic hydrogen proves to be very significant.

3.3.2 The elastic scattering

Unlike the partial transfer cross-sections σ(J)
t which are

determined only by the imaginary parts ρJ of the com-
plex phase shifts ωJ , the partial elastic cross-sections σ(J)

el
defined in (135) depend also on the real parts. As in our
problem it is practically impossible to obtain an explicit
form of the radial function χJ

0 (R) in the term interac-
tion region (Sect. 2.7), we do not consider the integers
NJ involved into (129) and confine ourselves to a treat-
ment of the quantities δJ . Plots of some of them vs. the
collision energy are shown in Figure 6. The total elastic
cross-section σel is given in Figure 7. In the same figure
we have also plotted the probability of the muon transfer
in an individual collision:

pt =
σt(1S)

σt(1S) + σel
. (166)

Let us discuss some features of the curves presented.
At low energies we have the S-scattering. The phase

shift δ0 is appreciably greater than ρ0 and makes the main
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Fig. 6. Some phase shifts δJ divided by π vs. the collision
energy Ec. The three windows correspond to the cases A, B
and C. The solid, dash-dot and dashed curves represent the
phase shifts at J = 0, 1 and 2 respectively. At Ec < 0.1 eV
the values of (δJ/π) multiplied by five are given. The vertical
dotted line marks the border of this energy region. The vertical
arrows indicate jumps of the phase shifts between (±π/2).

contribution to the elastic cross-section. δ0 is linear in v so
σel is nearly energy independent unlike the transfer cross-
section which is proportional to v−1. In the cases A and
C the phase shift δ0 is positive. The weakening of the ex-
ternal attraction in the case B leads to δ0 changing its
sign and becoming much smaller in the absolute value.
As a result, the elastic cross-section falls by three orders
of magnitude. It appears, such a behaviour of δ0 may be
attributed to a repulsive effect of the term interaction re-
gion.

For the waves with J ≥ 1 the low-energy phase shifts
δJ are positive and very small. However, they are much
greater than the quantities ρJ so that the scattering of
these waves is almost purely elastic. In the cases A and C
the phase shifts δJ agree well with simple results obtained
within the Born approximation. For the unscreened polar-
ization attraction (19) this result is [40] (in m.a.u.):

δB
J =

πβ (MrZ)2Ec

4 (J + 3/2) (J2 − 1/4)
. (167)

At a fixed J the phase shift is linear in Ec.

Fig. 7. The total elastic cross-section σel (the upper window)
and the probability pt of the muon transfer in an individual col-
lision (the lower one) vs. the collision energy Ec. The notation
of the curves is identical to that used in Figure 4.

In the case C the general Born formula is applied [29]:

δB
J = −2κMr

∞∫
Rc

Ue(R) j 2
J (κR)R2dR. (168)

jJ(κR) is the spherical Bessel function. The lower integra-
tion limit is formally equal to zero, but here it is equated to
the radius of the term interaction region Rc = 21 m.a.u.
This is justified by the potential hump suppressing the
radial wavefunction in this region. At Ec ∼ 10−4 eV and
J = 1 the van der Waals attraction is not yet manifested,
and the P-wave phase shifts δ1 and δB

1 are proportional to
κ3 in accordance with the general result

δJ ∝ κ(2J+1) (169)

valid for a short-range potential [29]. As J is increased,
the outermost classical turning point in the effective po-
tential Ueff(R) migrates into the region R > Rw where
the van der Waals attraction acts, and at J ≥ 3 the phase
shifts δJ follow the Born formula obtained for this attrac-
tion [40]:

δB
J =

3π C6M
3
r E

2
c

4 (J + 5/2) (J2 − 9/4) (J2 − 1/4)
. (170)

At a fixed J the phase shift is now quadratic in Ec.
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In the case B the P-wave phase shift δ1 is a half of the
Born one δB

1 given by the integral (168). This seems to be a
manifestation of the repulsive effect of the term interaction
region, the contribution of which is fully ignored in the
Born integral. As J is increased, this effect disappears,
and at J ≥ 3 the agreement of δJ and δB

J is already good.
As the collision energy is increased, the S-wave phase

shift δ0 calculated for the cases A and C goes up, passes
through a maximum and then has a zero at Ec ≈ 0.15 and
0.075 eV respectively. So, we have a kind of the Ramsauer
effect. Unlike the purely elastic scattering, the partial elas-
tic cross-section σ

(0)
el does not vanish at δ0 = 0 because

the quantity ρ0 remains nonzero. However, σ(0)
el falls con-

siderably — by three orders of magnitude compared to
the energy at which δ0 is maximum. Although the P-wave
cross-section is already appreciable, the Ramsauer effect
results in the appearance of a minimum in the total elastic
cross-section σel at Ec ≈ 0.3 eV (the case A) and 0.1 eV
(the case C). In the case B the absolute value of δ0 as well
as σel increase monotonically with Ec. On the whole, the
present behaviour of the S-wave phase shift is similar to
that well-known for the elastic scattering of electrons by
noble gases [41].

As the collision energy goes up to the top of a poten-
tial hump, the contribution of the corresponding partial
wave to the elastic cross-section increases rapidly. In the
cases B and C the D-wave is especially significant. The
presence of the quasi-steady state in this wave leads to
the elastic cross-section having a resonant peak similarly
to the transfer cross-section. At Ec = 2–3 eV there is one
more maximum in σel caused by the collision energy be-
coming greater than the hump height in the wave with
J = 3 (Tab. 3). It is interesting that unlike the transfer
cross-section, σel falls at higher energies in spite of the
waves with J = 4 and 5 becoming involved into the scat-
tering. The electron screening is not very important at
such energies.

At some energies there are discontinuities of the curves
of δJ . The phase shift jumps from (−π/2) to (+π/2). At
J ≥ 1 the energies at which these jumps occur lie above
the top of the potential hump in the corresponding partial
wave. As the total phase shift υJ is a continuous function
of Ec, each jump is equivalent to the decrease of the in-
teger NJ by unity in accordance with the fact that υJ

tends to zero in the limit Ec → ∞. Another situation is
observed near the energy of the D-wave quasi-steady state
in the cases B and C. Here the phase shift δ2 jumps in the
opposite direction — from (+π/2) to (−π/2). This means
that the integer N2 increases by unity as a result of the
D-wave penetrating into the term interaction region.

The convergence of the partial wave expansions related
to the elastic scattering is determined by the dependence
of δJ on the angular momentum at a fixed collision energy.
As J is increased, δJ tends to the Born values (167–170).
In the cases A and C it falls according to a power law
— J−3 and J−5 respectively. For this reason the par-
tial wave expansions involve a much greater number of
terms compared to the transfer cross-section. This espe-
cially concerns the cross-section of the back scattering. For

example, in the case A its evaluation at Ec = 15 eV needs
taking into account about three hundred waves in order to
provide a percent accuracy. However, the use of the Born
phase shifts at large J simplifies this problem.

The trend of the curves of the muon transfer proba-
bility pt shown in Figure 7 is determined by the above-
mentioned features of the transfer and elastic cross-
sections. At low collision energies σt(1S) varies inversely
with the relative motion velocity v while σel is nearly inde-
pendent on it. Accordingly, σt(1S) 	 σel, and pt is close to
unity. This is especially strongly pronounced in the case B
in which σel is anomalously small. In this case appreciable
deviations of pt from unity are observed only at thermal
energies because of a rapid increase of σel in this region.
In the other cases pt is about 0.5 even at Ec = 10−4 eV
and remains at the level of a few tenths right up to 0.5 eV.
In the case A the Ramsauer effect somewhat increases pt

at Ec around 0.3 eV while in the case C it proves to be
insignificant because both the transfer and elastic cross-
sections pass through a minimum at Ec ≈ 0.1 eV. In the
same manner the resonant peaks in the cross-sections tell
insignificantly on pt. An interesting feature of the curves
presented seems to be the presence of the well pronounced
minimum at Ec ≈ 5 eV. Here pt drops to 0.017. The rea-
son for which this minimum appears is that the elastic
cross-section passes through a maximum at Ec ≈ 3 eV
while the transfer one has a minimum at Ec ≈ 8 eV.

Let us now come to the quantities 〈w〉 and ∆w which
specify energy losses of muonic protium in elastic colli-
sions with neon atoms (Sect. 2.6). Instead of ∆w we shall
consider the ratio

Sw =
∆w

〈w〉 (171)

which is a measure of relative deviations of the energy loss
from its mean value. Plots of 〈w〉 and Sw vs. the collision
energy are given in Figure 8. The trend of the curves pre-
sented is determined by the structure of the angular dis-
tribution of the elastic scattering. At low collision energies
the S-scattering predominates, and the angular distribu-
tion is isotropic in the center-of-mass frame. In this case
we have:

σd = σel, σv =
2
3
σel, 〈w〉 =

1
2
, Sw =

1√
3
≈ 0.577.

(172)
At greater energies the shape of the curves depends sub-
stantially on the way of taking into account the electron
screening. For example, in the case B the curve of 〈w〉
passes through a maximum at thermal energies while in
the other cases it has a minimum. To explain this differ-
ence let us examine the amplitude of the elastic scattering.
At the energies considered it is mainly contributed by the
S- and P-waves. This fact together with the inequalities
ρJ � δJ � 1 allows one to simplify the formula (134) as
follows

fel(ϑ) ≈ κ−1(δ0 + 3 δ1 cosϑ). (173)
In the case B the phase shifts δ0 and δ1 differ in sign
(Fig. 6). As a result, the scattering at angles ϑ > (π/2) is
more probable, and the mean energy loss increases com-
pared to the S-scattering. This effect is especially noticed
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Fig. 8. The mean energy loss 〈w〉 and the ratio Sw vs. the
collision energy Ec. The notation of the curves is identical to
that used in Figure 4.

at energies around Ec ≈ 0.04 eV where the absolute value
of the ratio (3 δ1/δ0) is maximum — about 0.47. The angu-
lar distribution proves to be appreciably peaked backward.
For example, the ratio of the differential cross-sections at
the angles ϑ = π and 0 is equal to 7.8. In the cases A and C
both the phase shifts δ0 and δ1 are positive, and the situ-
ation is opposite: the scattering at angles ϑ < (π/2) pre-
dominates, and the mean energy loss decreases. In these
cases the D-wave is also significant. At thermal energies
there is a strong cancellation of the contributions of the
three waves to the large-angle scattering amplitude. The
corresponding differential cross-section is suppressed by
1−2 orders of magnitude compared to the cross-section at
ϑ = 0. As a result, 〈w〉 has a well pronounced minimum in
the thermal region. The trend of the curves of Sw is seen to
be mainly governed by the behaviour of the denominator
〈w〉 in the formula (171).

In the interval Ec = 0.3–0.5 eV the features of the elas-
tic scattering in the cases B and C are determined by the
D-wave quasi-steady state. For the pure D-scattering the
amplitude fel(ϑ) is proportional to the second Legendre
polynomial P2(cosϑ), the differential cross-section is an
even function of cosϑ, and the quantities σd and 〈w〉 come
back to the values (172). In the case C this leads to the
appearance of a peak in 〈w〉. In the case B the same peak

is less appreciable. For σv and Sw we have:

σv =
10
21
σel, Sw =

√
11
21

≈ 0.724. (174)

The quantity 〈w〉 calculated for the case A is also peaked
in the energy interval considered. This is due to the cor-
responding phase shifts δ0 and δ1 differing in sign in this
region (see Fig. 6 and the text after the formula (173)).

At the subsequent increase of the collision energy to
a few eV the mean energy loss 〈w〉 decreases rapidly.
The mean square deflection ∆w changes less regularly.
It demonstrates a tendency of decreasing which is slower
than the one of 〈w〉 and accompanied by fluctuations. As
a result, the ratio Sw increases. On the whole, the plots
of Sw show that ∆w is comparable with 〈w〉 at all the
energies considered, i.e. the spread of energy losses is con-
siderable and should be taken into account in, for example,
treating the moderation of muonic protium in a hydrogen-
neon mixture with a high percentage of neon. Finally, it
should be emphasized that similarly to the muon transfer
the results on the elastic scattering are very sensitive to
the way of taking into account the electron screening in
the entrance channel. The effect of the electron screening
is significant right up to collision energies of 1−2 eV.

4 Summary

Let us state the most important positions of the present
work. The direct muon transfer from protium to neon was
theoretically examined in the interval of collision energies
from 10−4 eV to 15 eV. The elastic scattering of muonic
protium by neon was also treated at these energies. A vari-
ant of the perturbed stationary states (PSS) method was
used. Its basic idea was to provide the correct descrip-
tion of the entrance channel of the transfer reaction at
large interatomic distances R. Accordingly, the three-body
Hamiltonian was written in the Jacobi coordinates of this
channel, and the Coulomb two-center problem was formu-
lated in these coordinates. The expansion of the three-
body wavefunction in eigenstates of the two-center prob-
lem yielded a set of coupled ordinary differential equations
for the radial functions of the relative motion in the en-
trance and transfer channels. The simplest case was con-
sidered in which the entrance channel was described by
the only two-center state correlated to the ground state
of muonic protium in the separated atoms limit. A good
description of the entrance channel at large R has been
actually achieved in this way. Namely, the correct dissoci-
ation limit was found, the polarization attraction propor-
tional to R−4 was obtained in the asymptotic expansion
of the interatomic potential in powers of R−1, no spurious
long-range interactions of lower powers of R−1 appeared,
the dipolar polarizability of muonic protium was repro-
duced with one percent accuracy. Moreover, the electron
screening in the entrance channel was easily included into
the calculation.

The main simplification made in the present approach
was the use of bound eigenstates of the same two-center
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problem in describing the transfer channel. Actually, we
took into account three σ-states. In the separated atoms
limit their parabolic quantum numbers are: n′

1 = 0,
n′

2 = 5, 6 and 7. Although these states are localized at
neon at infinite R, they are not correlated to any individ-
ual states of the real µNe atom. As a result, the dissoci-
ation limits in the transfer channel were obtained to be
incorrect and spurious potentials proportional to R−2 ap-
peared. These defects are due to the transfer channel being
treated in the Jacobi coordinates of the entrance channel.
In this situation the viewpoint had to be adopted that the
whole group of the above-mentioned states somehow de-
scribed the transfer channel. Accordingly, only the total
muon transfer rate was evaluated. Moreover, the electron
screening in the transfer channel had to be ignored because
a way of its taking into account is not yet clear. Never-
theless, the effect of all the above-indicated defects is ex-
pected to be not very significant because of large energies
of the relative motion in the transfer channel (a few keV).
For this reason the present approach seems to be reason-
able. Moreover, it appears to be preferable to the standard
PSS method [25]. Indeed, the latter provides the asymp-
totically correct description of neither of the binary chan-
nels. This is certainly poor at low collision energies in the
entrance channel. In contrast, in the present approach the
entrance channel is described well, and all the defects are
driven into the transfer channel in which their effect is less
significant.

Let us now come to the results on the muon transfer.
First of all it is necessary to note that the electron screen-
ing in the entrance channel was found to be very important
at the collision energies below 1 eV. Its proper treatment
allowed one to get a reasonable agreement of the calcu-
lated transfer rate with the experimental value measured
in a liquid hydrogen-neon mixture at the temperature T
about 20 K. It should be emphasized that this statement
is valid on the assumption that the additional effects of H2

molecules on the binary transfer reaction in the liquid are
not too significant. The situation at room temperatures
proved to be worse: the calculated transfer rate exceeded
the experimental one by a factor of two. Nevertheless, two
circumstances seem to be very important. Namely, the cal-
culation correctly reproduces the experimentally observed
tendency of decreasing the transfer rate with increasing
the temperature in the interval 20−300 K, and it pre-
dicts the existence of the well pronounced minimum of
the transfer rate at T ≈ 300 K. The latter result corre-
sponds qualitatively to the experimental fact of a strong
suppression of the muon transfer at room temperatures.
One more interesting prediction is the resonant peak in the
transfer rate at collision energies of 0.3−0.5 eV. It is asso-
ciated with the D-wave quasi-steady state which appears
provided the electron screening is taken into account.

Concerning the results on the elastic scattering, they
were found to be still more sensitive to the electron screen-
ing. This is especially strongly manifested at low collision
energies. For example, the total elastic cross-section σel

varies by several orders of magnitude depending on the
way in which the screening is taken into account. One

should note two effects revealed under the proper treat-
ment of the screening. These are the Ramsauer effect and
the D-wave resonance scattering. The former leads to the
appearance of the minimum in σel at the collision energy
Ec ≈ 0.1 eV, the latter results in the cross-section being
peaked at Ec ≈ 0.3 eV. It is interesting that as the simi-
lar behaviour is also typical for the transfer cross-section,
the probability pt of the muon transfer in an individual
collision proves to be a slowly varying function of the col-
lision energy at Ec < 0.5 eV. In this region it is of the
order of a few tenths, i.e. the muon transfer competes
successfully with the elastic scattering. At greater ener-
gies pt drops rapidly and passes through a minimum at
Ec ≈ 5 eV. Here the elastic scattering predominates. Some
interesting features were also found in the energy depen-
dence of the mean energy loss in elastic collisions. Besides
the peak associated with the resonance scattering the well
pronounced minimum was predicted at thermal energies.
In this region there is a strong cancellation of the contribu-
tions of the S-, P- and D-waves to the backward scattering
amplitude. The differential elastic cross-section proves to
be peaked forward and the mean energy loss decreases.
This result clearly indicates the importance of taking into
account the P- and D-waves even at thermal energies.

This work was supported by the Paul Scherrer Institute (PSI)
and by the RFBR grant No. 00–15–96590. I am very grateful
to Dr. D. Taqqu who attracted my attention to the present
problem. Drs. P. Hauser, K. Kirch, F. Kottmann, R. Pohl,
L.M. Simons and Mr. B. Leoni are thanked for their hospitality
during my stay at PSI. I am also grateful to Dr. V.D. Efros for
fruitful discussions and to Dr. Yu.S. Sayasov who acquainted
me with a more detailed version of his paper [21] and clarified
some points of his calculations.

References

1. A.I. Akhiezer, V.B. Berestetskii, Quantum Electro-
dynamics (Interscience Publ., N.Y., 1969), Sect. 38.4

2. K. Pachucki, Phys. Rev. A 60, 3593 (1999); 53, 2092
(1996)

3. P. Hauser et al., Proposal for an experiment at Paul
Scherrer Institute, Villigen, No. R-98-03.1, 1998

4. D. Taqqu et al., Hyperf. Interact. 119, 311 (1999)
5. K. Kodosky, M. Leon, Nuovo Cim. B 1, 41 (1971)
6. G. Carboni, G. Fiorentini, Nuovo Cim. B 39, 281 (1977)
7. T.S. Jensen, V.E. Markushin, preprint PSI-PR-99-32 (Paul

Scherrer Institute, Villigen, 1999, www.psi.ch)
8. R.O. Mueller, V.W. Hughes, H. Rosenthal, C.S. Wu, Phys.

Rev. A 11, 1175 (1975)
9. J.S. Cohen, J.N. Bardsley, Phys. Rev. A 23, 46 (1981)

10. F. Kottmann et al., Hyperf. Interact. 119, 3 (1999)
11. H. Anderhub et al., Phys. Lett. 143, 65 (1984); 71, 443

(1977)
12. R. Pohl et al., Hyperf. Interact. 119, 77 (1999)
13. D. Taqqu, preprint PSI-PR-95-07 (Paul Scherrer Institute,

Villigen, 1995, www.psi.ch)
14. R. Jacot-Guillarmod, Phys. Rev. A 51, 2179 (1995)



38 The European Physical Journal D

15. G. Fiorentini, G. Torelli, Nuovo Cim. A 36, 317 (1976)
16. L. Bracci, G. Fiorentini, Nuovo Cim. A 50, 373 (1979)
17. A. Adamczak et al., At. Data Nucl. Data Tables 62, 255

(1996)
18. S.S. Gershtein, Sov. Phys. JETP 16, 501 (1963)
19. S.S. Gershtein, in Proceedings of the International

Symposium on Muonic Atoms and Molecules, Ascona,
1993, edited by L.A. Schaler, C. Petitjean (Monte Verita,
the Centro Stefano Franscini, Ascona, 1993), p. 169

20. L. Schellenberg, Muon Cat. Fusion 5/6, 73 (1990/91) and
references therein

21. Yu.S. Sayasov, Helv. Phys. Acta 63, 547 (1990)
22. Yu.S. Sayasov, Phys. Lett. A 159, 271 (1991)
23. R.A. Sultanov, S.K. Adhikari, Phys. Rev. A 62, 022509

(2000)
24. R.A. Sultanov, S.K. Adhikari, J. Phys. B 35, 935 (2002)
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